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coordinates conjugate to winding number — parameterize a doubled torus. In closed string

field theory, the string field depends on all zero-modes and so can be expanded to give an

infinite set of fields on the doubled torus. We use string field theory to construct a theory

of massless fields on the doubled torus. Key to the consistency is a constraint on fields and

gauge parameters that arises from the L0 − L̄0 = 0 condition in closed string theory. The

symmetry of this double field theory includes usual and ‘dual diffeomorphisms’, together

with a T-duality acting on fields that have explicit dependence on the torus coordinates

and the dual coordinates. We find that, along with gravity, a Kalb-Ramond field and a

dilaton must be added to support both usual and dual diffeomorphisms. We construct

a fully consistent and gauge invariant action on the doubled torus to cubic order in the

fields. We discuss the challenges involved in the construction of the full nonlinear theory.

We emphasize that the doubled geometry is physical and the dual dimensions should not

be viewed as an auxiliary structure or a gauge artifact.
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1 Introduction and summary

T-duality is a striking property of string theory.1 Closed strings can wrap around non-

contractible cycles in spacetime, giving winding states that have no analogue for particle

theories. The existence of both momentum and winding states is the key property of

strings that allows T-duality: the complete physical equivalence of string theories on dual

backgrounds that have very different geometries.

1See [1] for a review of T-duality and references.
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String field theory provides a complete gauge-invariant formulation of string dynamics

around any consistent background, and we will use it here to study T-duality. A closed

string field theory for a flat spacetime with some spatial directions curled up into a torus

was examined long ago by Kugo and Zwiebach [2],2 following earlier work in [4, 5]. In

particular, [2] showed how T-duality is realised as a symmetry of the string field theory.

The string field theory treats momenta and winding rather symmetrically and, as a conse-

quence, expanding the string field gives component fields that depend on both momentum

and winding number. Fourier transforming to position space then gives component fields

that depend on both the spacetime coordinates conjugate to momentum and on new pe-

riodic coordinates conjugate to winding number. For a spacetime which is a product of a

Minkowski space M with a d-dimensional torus T d, the component fields are then fields

on M ×T 2d where the doubled torus T 2d contains the original spacetime torus T d together

with another torus T d parameterised by the winding coordinates. In fact, the doubled torus

contains the original torus T d as well as the tori related to it by T-duality. Then T-duality

can be viewed as changing which T d subspace of the doubled torus is to be regarded as

part of the spacetime [6].

The complete closed string field theory on a torus is exotic and complicated. To our

knowledge, it has not been examined in detail at the component level to try to uncover

how spacetime fields realise the magic of T-duality. This is one of the main purposes of

the present paper. As a simplification, we restrict ourselves to the ‘massless’ sector or,

more precisely, to the set of fields that would be massless in the uncompactified theory. We

thus focus on the gravity, antisymmetric tensor (Kalb-Ramond), and dilaton fields. We

include all momenta and winding excitations of these fields by keeping their full dependence

on the coordinates of the doubled torus. T-duality exchanges momentum and winding

excitations, so that we expect T-duality to be a symmetry of this massless theory. A

T-duality symmetric field theory on the doubled torus that can incorporate all T-dual

geometries is likely to be novel and perhaps even exotic. Our hope is that this massless

theory exists and it is not so complicated as to defy construction. Our results so far

are encouraging: we have constructed the theory to cubic order in the fields. No higher

derivatives are needed: each term has two derivatives, as in Einstein gravity.

Previous work on double field theory includes that of Tseytlin [7] who used a first-

quantized approach with non-covariant actions for left and right-moving string coordinates

on the torus. He calculated amplitudes for vertex operators depending on both coordinates,

finding partially gauge-fixed cubic interactions for metric perturbations that are consistent

with our action. It would be interesting to develop the first-quantised approach further,

perhaps using the covariant formulation of [6]. Siegel [8] considered the field theory for the

massless sector of closed strings without winding modes, but this restriction is implemented

in an O(d, d, Z) covariant fashion through an intriguing formulation of T-duality. An

effective field theory on a doubled torus also arose in the study of open strings on a torus

with “space-filling” and point-like D-branes [9].

2While this work used a covariantised light-cone formulation of the string field theory, the results are

largely applicable to the covariant closed string field theory [3] which we use here.
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The gauge symmetry of the theory we build should include diffeomorphisms for each T d

subspace of the doubled torus that can arise as a possible spacetime. We find that this is the

case, and the linearised transformations include linearised diffeomorphisms on the doubled

torus as well as a doubled version of the antisymmetric tensor field gauge symmetry. The

non-linear structure is rather intricate and a simple characterization remains to be found.

We find that the Jacobi identities are not satisfied, so the symmetry appears not to be

diffeomorphisms on the doubled torus or even a Lie algebra. Gauge invariance requires

that the fields and gauge parameters satisfy a constraint that arises from the L0 − L̄0 = 0

constraint of closed string field theory.

The doubled torus T 2d arises naturally in the first-quantized approach to strings on

a torus, leading to a number of approaches involving sigma models whose target is the

space with doubled torus fibres [6, 7, 10–17]. T-duality extends to spacetimes that have

a torus fibration if the fields are independent of the coordinates of the torus fibres. The

Buscher rules [18] for d = 1, and their extension to d > 1 [19], encode the transformation

of such a background under T-duality. In the doubled torus formalism of refs. [6, 14], the

T d fibres of such a background are replaced with doubled torus fibres T 2d. A key feature of

this formalism is that T-duality is a manifest geometric symmetry, as the T-duality group

acts through diffeomorphisms on the doubled torus fibres. Moreover, the target space with

doubled torus fibres incorporates all possible T-dual geometries. The conventional picture

emerges only on choosing a T d subspace of each T 2d fibre to be the spacetime torus, and

T-duality acts to change which T d subspace is chosen [6]. The fact that T-duality is a

symmetry means that the physics is the same in each case.

If fields have explicit dependence on the torus coordinates, the situation is not well

understood. It is expected that fields that depend on the spacetime torus coordinates

x should transform into fields that depend on the dual coordinates x̃. Dependence on

the dual coordinates is puzzling, but one would expect that while x-dependence affects

particles, x̃-dependence should affect winding modes, so that particles and winding modes

could experience different backgrounds; see e.g. [20]. Dependence on x̃ has been associated

with world-sheet instanton effects [20], and a number of calculations have supported this

view [21–24]. General string backgrounds, however, should involve fields depending on

both x and x̃, and it is to be expected that there should be an extension of the T-duality

transformation rules to this general case [25, 26]. We find the T-duality transformations

that are a symmetry of the double action for fields that depend on both x and x̃. The fields

in this action arise naturally from string field theory. In the case with no dependence on

the dual coordinates x̃, we use the non-linear relation between these fields and the familiar

metric and B-field to find a generalisation of the Buscher rules to the case of fields with

general dependence on the torus coordinates x (or any set of coordinates related to these by

a duality). The form of these transformations then suggest a natural further generalisation

to the case in which the fields have full dependence on x and x̃.

We would like to emphasize that the inclusion of dual coordinates in double field theory

is not a gauge redundancy or a reformulation of an underlying non-doubled geometry.

The dual coordinates are needed to represent physical degrees of freedom; one cannot

eliminate the dependence of fields on the additional coordinates using gauge conditions

– 3 –
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or solving constraints. This is perhaps less obvious in first quantization than in second

quantization. In first quantization the familiar sigma model for closed strings on tori

defines a conformal field theory. Using a doubled torus or other additional structures for

the sigma model gives a better and more useful description of the same conformal field

theory. It allows, for example, a natural construction of vertex operators for states with

both momentum and winding. The physics, however, is in the conformal field theory,

which includes momentum and winding, however they are described. In the string field

theory a non-doubled formulation is not even an option. The string field, always defined

by the conformal field theory state space, necessarily depends on coordinates conjugate

to momentum and dual coordinates conjugate to winding. This dependence is nontrivial.

While string field theory is now known to have nonperturbative information (at least in

the open sector), our use of closed string field theory here has been more limited. String

field theory was useful in the construction of a nontrivial action and gauge transformations

that would have been hard to guess or construct directly.

Let us now discuss in some detail the setup and results in the present paper. We

shall be interested in closed string theory in D-dimensional flat space with d compactified

directions, R
n−1,1 × T d where n + d = D. We shall present our discussion for the critical

D = 26 bosonic closed string, but much of this applies to closed superstring theories. We

use coordinates xi = (xµ, xa) with i = 0, . . . ,D − 1 which split into coordinates xµ on the

n-dimensional Minkoswski space R
n−1,1 and coordinates xa on the d-torus T d. States are

labelled by the momentum pi = (kµ, pa) and the string windings wa. For coordinates with

periodicity xa ∼ xa +2π, the operators pa and wa have integer eigenvalues — these are the

momentum and winding quantum numbers. Perturbative states are of the form

∑

I

∫
dk
∑

pa,wa

φI(kµ, pa, w
a)OI |kµ, pa, w

a〉 , (1.1)

where OI are operators built from matter and ghost oscillators and φI(k, pa, w
a) are

momentum-space fields which also depend on the winding numbers. Fourier transform-

ing, dependence on the momenta kµ, pa becomes dependence on the spacetime coordinates

xµ, xa as usual, while dependence on wa is replaced by dependence on a new periodic coordi-

nate x̃a conjugate to winding numbers wa. Thus the fields φI above give us coordinate-space

fields

φI(x
µ, xa , x̃a) . (1.2)

Then (xa, x̃a) are periodic coordinates for the doubled torus T 2d. All physical string states

must satisfy the level matching condition, i.e., they must be annihilated by L0 − L̄0:

L0 − L̄0 = N − N̄ − paw
a = 0 . (1.3)

This constraint will play a central role in our work. The free string on-shell condition

L0 + L̄0 − 2 = 0 takes a simple form when the background antisymmetric tensor vanishes:

M2 ≡ −(k2 + p2 + w2) =
2

α′
(N + N̄ − 2) . (1.4)

– 4 –
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Here α′p2 = Ĝabpapb and α′w2 = Ĝabw
awb where Ĝab is the torus metric and N, N̄ are

the number operators for the left and right moving oscillators. We can view M2 as the D-

dimensional mass-squared and the associated massless states (M2 = 0) satisfy N + N̄ = 2.

The mass M in D-dimensions should not be confused with the mass M in the n-

dimensional Minkoswki space obtained after compactification:

M2 ≡ −k2 = p2 + w2 +
2

α′
(N + N̄ − 2) . (1.5)

For a rectangular torus the metric is Ĝab = δabR
2
a/α

′, where Ra is the radius of the circle

along xa. If all the circles are sufficiently large compared with the string length (R2
a ≫ α′),

then w2 =
∑

a w2
aR

2
a/α

′ is large and p2 =
∑

a p2
aα

′/R2
a is small, so that the states that are

light compared to the string scale include those which have wa = 0 and N + N̄ = 2. This is

the Kaluza-Klein tower of states obtained by compactifying the theory of massless states in

D dimensions. A conventional effective field theory in the n-dimensional Minkowski space

would keep states for which M2 is zero or small, and would give the leading terms in a

systematic expansion in M2. Instead, here we focus on M2 = 0 states and in so doing,

we are keeping certain states that, from the lower-dimensional point of view, are heavy

while neglecting some which are lighter.3 It is possible that the theory we are trying to

build should be considered as an effective theory in which we keep a set of massless fields,

including all of their large-energy excitations, and integrate out everything else. At special

points in the torus moduli space there are extra states with M2 = 0 giving enhanced gauge

symmetry, while near these special points these states will have small M2. These have

(N, N̄ ) = (1, 0) or (N, N̄ ) = (0, 1) and so have M2 = −2/α′; we will not include these here.

T-duality is an O(d, d; Z) symmetry of the string theory acting linearly on the torus

coordinates xa, x̃a and preserving their boundary conditions. This includes a Z2 symmetry

for each direction a that interchanges xa with x̃a. For a rectangular torus in which xa is a

coordinate for a circle of radius Ra, x̃a is the coordinate for a T-dual circle of radius α′/Ra.

Performing a Z2 on each of the toroidal dimensions takes a theory on the original spacetime

R
n−1,1 × T d with coordinates xµ, xa to a theory in the dual spacetime R

n−1,1 × T̃ d with

coordinates xµ, x̃a.

In the closed string field theory for this toroidal background the string field |Ψ〉 is

a general state of the form (1.1), and so can be viewed as a collection of component

fields φI(x
µ, xa, x̃a). It should be emphasized that the difference between the toroidally

compactified theory and the D-dimensional Minkowski space theory is that the toroidal

zero modes are doubled; no new oscillators are added. Two off-shell constraints must be

satisfied by both the string field and the gauge parameter |Λ〉. We must have

(b0 − b̄0)|Ψ〉 = 0, (b0 − b̄0)|Λ〉 = 0 , (1.6)

and the associated level-matching conditions

(L0 − L̄0)|Ψ〉 = 0 , (L0 − L̄0)|Λ〉 = 0 . (1.7)

3We thank David Gross for emphasizing this point to us.
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The free field equation is Q|Ψ〉 = 0, where Q is the BRST operator, and it is invariant

under gauge transformations δ|Ψ〉 = Q|Λ〉. The ket |Λ〉 gives rise to an infinite set of gauge

parameters that depend on xµ, xa, and x̃a. On account of (1.3) and (1.7) the string field

satisfies

(N − N̄)|Ψ〉 = paw
a|Ψ〉 , (1.8)

and for a component field φI(x
µ, xa, x̃a) we have

(NI − N̄I)φI =
1

2
α′∆φI , with ∆ ≡ − 2

α′

∂

∂xa

∂

∂x̃a
. (1.9)

Here the NI and N̄I are the eigenvalues of N and N̄ on the CFT state for which φI is

the expansion coefficient. Thus string field theory is a theory of constrained fields, but the

constraint still allows fields with non-trivial dependence on both xa and x̃a if d > 1.

For N = N̄ = 1 we have the following fields, all with M2 = 0:4

hij(x
µ, xa, x̃a), bij(x

µ, xa, x̃a), d (xµ, xa, x̃a) . (1.10)

The constraint requires that these fields are all annihilated by the differential operator ∆.

The solutions independent of x̃ give the gravity field hij(x
µ, xa), the antisymmetric tensor

field bij(x
µ, xa), and the dilaton d(xµ, xa) in D dimensions. The solutions independent of

xa give dual versions of these fields, while again the general case depends on both xa and

x̃a (for d > 1). Note that e.g. hij decomposes as usual into hµν , hµa, hab and there is no

doubling of the tensor indices. At higher levels the fields have the same index structure as

for the uncompactified string theory, but now depend on x̃ as well as xµ, xa and are subject

to the constraint (1.9).

In this paper we focus on the M2 = 0 fields in (1.10). The relevant gauge parameters

are a pair of vector fields ǫi(x
µ, xa, x̃a) and ǫ̃i(x

µ, xa, x̃a), both of which are annihilated by

∆. Our analysis of the quadratic theory shows that the linearised gauge transformations

take the form

δhij = ∂iǫj + ∂jǫi + ∂̃iǫ̃j + ∂̃j ǫ̃i ,

δbij = −(∂̃iǫj − ∂̃jǫi) − (∂iǫ̃j − ∂j ǫ̃i) ,

δd = −1

2
∂ · ǫ +

1

2
∂̃ · ǫ̃ .

(1.11)

We use the notation x̃i = (x̃a, 0) and ∂̃i = (∂/∂x̃a , 0, ) which makes it clear that only the

coordinates on the torus are doubled. The above gauge structure is rather intricate and

novel. For parameters and fields that are independent of x̃, these are the standard lin-

earised diffeomorphisms (acting on xi) with parameter ǫi and antisymmetric tensor gauge

transformations with parameter ǫ̃i. A dilaton φ which is a scalar (invariant under these lin-

earised transformations) can be defined by φ = d+ 1
4ηijhij . Parameters and fields that are

independent of xa live on the dual space with coordinates xµ, x̃a. These are again linearised

diffeomorphisms, now acting on xµ, x̃a, and antisymmetric tensor gauge transformations,

4There are additional auxiliary fields and gauge trivial fields that do not contribute propagating degrees

of freedom.
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but the roles of the parameters ǫi and ǫ̃i have been interchanged. Now ǫ̃i is the diffeomor-

phism parameter and ǫi the antisymmetric tensor gauge parameter. In this case, the scalar

dilaton would be φ̃ = d − 1
4ηijhij . While φ is invariant under ǫ transformations and φ̃ is

invariant under ǫ̃ transformations, there is no combination of d and ηijhij that is invariant

under both. In the full non-linear theory there is no dilaton that is a scalar under both

diffeomorphisms and dual diffeomorphisms, and d is the natural field to use. Nonlinearly,

one has a relation of the form e−2d = e−2φ√−g; the dilaton d is invariant under T-duality

and its expectation value provides the duality-invariant string coupling constant [2, 14, 34].

In the general case with dependence on both xa and x̃a one has both diffeomorphisms

and dual diffeomorphisms, giving an intriguing structure of ‘doubled diffeomorphisms’.

Moreover, we will show the diffeomorphisms and antisymmetric tensor gauge transforma-

tions become closely linked, with the roles of the parameters interchanged by T-duality.

The consistency of this free theory hinges crucially on the constraint ∆ = 0 satisfied by

the fields and gauge parameters. Given the general interest in theories on doubled tori,

we analyze the free theory further and find that linearised double diffeomorphisms cannot

be realised with the hij field alone: the Kalb-Ramond and dilaton fields must be added.

While diffeomorphism symmetry does not fix the field content of the massless sector of

closed string theory, ‘double diffeomorphisms’ does!

We are guided by string field theory to build a remarkable interacting generalisation

of the linearised massless theory described above. In doing so we obtain a two-derivative

theory with a gauge invariance that is the nonlinear version of the doubled diffeomorphisms

found in the quadratic theory. The constraint ∆ = 0 remains unmodified and the theory

remains a theory of constrained fields. The action is given in (3.25) and the gauge trans-

formations are given in (3.27). The theory also has a discrete Z2 symmetry (3.26) that

arises from the orientation invariance of the underlying closed string theory. It should be

emphasized that the quadratic part of the action that we write is exactly that of the string

field theory, but the cubic part of the action is not. In constructing this cubic part we drop

all terms with more than two derivatives. We also drop the momentum-dependent sign

factors due to cocycles that enforce the mutual locality of vertex operators [4, 5, 27, 28, 32].

Gauge invariance works to this order without the inclusion of such terms, although some

may be needed to achieve a complete nonlinear construction. The role of sign factors is

discussed in section 5.

The symmetry algebra of closed string field theory is not a Lie algebra (the Jacobi

identitites do not hold) as in familiar theories, but rather a homotopy Lie algebra [3]. The

structure of the interactions we find in our double field theory leads to a symmetry algebra

that appears not to be a Lie algebra, suggesting that some of the homotopy structure of the

string field theory survives in the massless theory. As we discuss in section 5, an explicit

projector is needed so that the product of two fields in the kernel of ∆ is also in the kernel

of ∆. The presence of this projection is part of the reason the brackets that define the

composition of gauge parameters do not satisfy a Jacobi identity. Understanding the full

symmetry of the theory is a central open problem. Further discussion of open problems

and directions for further research can be found in section 6.

In closing this introduction we note that the work here furnishes some new results

– 7 –
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in closed string field theory. The cubic theory of the massless fields, required to see the

full structure of diffeomorphisms, was not worked out before. The formulation of gravity

in string theory uses auxiliary fields that must be eliminated using their equations of

motion as well as a gauge trivial scalar field that must be carefully gauged away. Field

redefinitions are needed to obtain a simple form of the gauge transformations. In the

end, the formulation of gravity plus antisymmetric field and a dilaton in string theory

is extremely efficient; it uses eij = hij + bij and a duality-invariant scalar d (related to

linearized order to the usual dilaton φ by d = φ − 1
4h). The cubic action we present is

much simpler than the cubic action obtained by direct expansion of the familiar action for

gravity, antisymmetric tensor, and dilaton. The results in this paper suffice to find the field

redefinitions that connect the string field theory and sigma model fields for the massless

sector of the closed string to quadratic order in the fields and without derivatives. Earlier

work in this direction includes that of [29], which discussed general coordinate invariance

in closed string field theory and [30], which studied the constraints that T-duality imposes

on the relation between closed string fields and sigma model fields.

2 The free theory

In this section we begin by giving an argument supporting our claim that linearised double

diffeomorphism invariance requires the massless multiplet of closed string theory. We

then review closed string theory on toroidal backgrounds, setting the notation and giving

the basic results used in this paper. We then use the free closed string field theory to

construct the free double field theory. We study the symmetries in detail and emphasize

the differences with the conventional free theory of gravity, antisymmetric field, and dilaton.

2.1 Linearised double diffeomorphism symmetry

In the introduction we introduced M2 = 0 fields depending on (xµ, xa, x̃a) with linearised

transformations (1.11). These included a field hij(x
µ, xa, x̃a) transforming under linearised

diffeomorphisms as

δhij = ∂iǫj + ∂jǫi . (2.1)

and under linearised ‘dual diffeomorphisms’ as

δ̃hij = ∂̃iǫ̃j + ∂̃j ǫ̃i . (2.2)

We will now show why we cannot have a theory of hij alone that is invariant under such

‘double diffeomorphisms’. We will find that introducing a Kalb-Ramond field and a dilaton

is essential, and that the constraint ∆ = 0 must be satisfied for invariance.

For Einstein’s gravity S = 1
2κ2

∫ √−gR, and to quadratic order in the fluctuation field

hij(x) ≡ gij(x) − ηij one has

(2κ2)S0 =

∫
dx

[
1

4
hij∂2hij −

1

4
h∂2h +

1

2
(∂ihij)

2 +
1

2
h∂i∂j hij

]
. (2.3)

This action, of course, is invariant under (2.1), but we wish to implement also the dual

diffeomorphisms (2.2). For a field hij(x̃, x) depending on both x and x̃, the action is an

– 8 –
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integral over the full n + 2d dimensional doubled space. We will denote this integral as∫
[dxdx̃]. The natural action is

(2κ2)S =

∫
[dxdx̃]

[
1

4
hij∂2hij −

1

4
h∂2h +

1

2
(∂ihij)

2 +
1

2
h∂i∂j hij

+
1

4
hij ∂̃2hij −

1

4
h∂̃2h +

1

2
(∂̃ihij)

2 +
1

2
h ∂̃i∂̃j hij

]
.

(2.4)

For a gravity field hij(x
i) independent of x̃a the action reduces to the linearised Einstein

action on the space with coordinates xi. For a gravity field hij(x
µ, x̃a) independent of xa

the action reduces to the linearised Einstein action on the dual space with coordinates

xµ, x̃a. The first line in (2.4) is invariant under the δ transformations (2.1), the second is

invariant under the δ̃ transformations (2.2).

Let us vary the double action S under δ̃. The second line is invariant and varying the

first gives

(2κ2) δ̃S =

∫
[dxdx̃]

[
hij∂2∂̃iǫ̃j + ∂ih

ij (∂k∂̃k)ǫ̃j

− h∂2 ∂̃ · ǫ̃ + h (∂i∂̃
i)∂j ǫ̃

j

+ ∂ih
ij ∂k ∂̃j ǫ̃k + (∂i∂jh

ij)∂̃ · ǫ̃
]
.

(2.5)

We have organised the right-hand side so that the terms on each line would cancel if the

tilde derivatives were replaced by ordinary derivatives. As we can see, no cancellation

whatsoever takes place! Grouping related terms we have

(2κ2) δ̃S =

∫
[dxdx̃]

[
hij∂2∂̃iǫ̃j − hij∂i∂

k∂̃j ǫ̃k + (∂i∂jh
ij − ∂2h ) ∂̃ · ǫ̃

+ (∂ihij − ∂jh) (∂ · ∂̃)ǫ̃j
]
.

(2.6)

The terms on the second line vanish when the gauge parameter ǫ̃ satisfies the constraint

∂ · ∂̃ = 0. Relabeling the indices on the first two terms, we get

(2κ2) δ̃S =

∫
[dxdx̃]

[
(∂̃jh

ij)∂k(∂iǫ̃k − ∂k ǫ̃i) + (∂i∂jh
ij − ∂2h ) ∂̃ · ǫ̃

+(∂ihij − ∂jh) (∂ · ∂̃)ǫ̃j
]
.

(2.7)

In order to cancel this variation we need new fields with new gauge transformations. To

cancel the first term we can use a Kalb-Ramond field bij and a new term S1 in the action:

(2κ2)S1 =

∫
[dxdx̃] (∂̃jh

ij)∂kbik , with δ̃bij = −(∂iǫ̃j − ∂j ǫ̃i) . (2.8)

To cancel the second term in (2.7) we introduce a dilaton φ and a new term S2 given by

(2κ2)S2 =

∫
[dxdx̃](−2)(∂i∂jh

ij − ∂2h )φ , with δ̃φ =
1

2
∂̃ · ǫ̃ . (2.9)

The above are the first steps in the construction of a consistent quadratic theory. More

terms are needed, and we will find the full, invariant quadratic action from the closed string
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field theory in section 2.3. The lessons are clear, however. Implementation of linearised

doubled diffeomorphisms for hij requires the addition of further fields, most naturally, a

Kalb-Ramond gauge field and a dilaton. Moreover, a second-order differential constraint is

required: fields and gauge parameters must be annihilated by ∂ · ∂̃. In fact, to this order,

it suffices for the gauge parameters to satisfy the constraint.

It is natural to ask if by adding further fields one can find an action that is invariant

without the constraint. The offending term on the second line of (2.7) can be cancelled in

this way, but then further terms are needed. We have not been able to find a non-trivial

theory that is invariant under both δ and δ̃ transformations without use of the constraint.

2.2 General toroidal backgrounds

An explicit discussion of closed string field theory in toroidal backgrounds was given in the

work of Kugo and Zwiebach [2]. Following this work, we review the basic results that will

be needed here. We begin with the string action, given by5

S = − 1

4π

∫ 2π

0
dσ

∫
dτ
(√

γγαβ∂αXi∂βXjGij + ǫαβ∂αXi∂βXjBij

)
. (2.10)

The string coordinates

Xi = {Xa ,Xµ} , (2.11)

split into string coordinates Xµ for n-dimensional Minkowski space and periodic string

coordinates Xa for the internal d-dimensional torus:

Xa ∼ Xa + 2π . (2.12)

In the above action Gij and Bij are the constant background metric and antisymmetric

tensor, respectively. As usual, we define the inverse metric with upper indices:

GijGjk = δi
k . (2.13)

The background fields are taken to be

Gij =

(
Ĝab 0

0 ηµν

)
, Bij =

(
B̂ab 0

0 0

)
. (2.14)

and we define

Eij ≡ Gij + Bij =

(
Êab 0

0 ηµν

)
, Êab ≡ Ĝab + B̂ab . (2.15)

The Hamiltonian H for this theory takes the form

4πH = (X ′ , 2πP )H(E)

(
X ′

2πP

)
, (2.16)

5Our formulae will keep explicit factors of α′. In the worldsheet action (2.10) Gij , Bij , and the Xi are

all dimensionless.
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where the derivatives of the coordinates Xi′ = ∂σXi and the momenta Pi are combined

into a 2D dimensional column vector and the 2D × 2D matrix H is given by

H(E) =




G − BG−1B BG−1

−G−1B G−1


 . (2.17)

The matrix H(E) satisfies the constraint H−1 = ηHη.

The mode expansions for Xi, Pi and the dual coordinates X̃i take the form

Xi(τ, σ) =xi + wiσ + τ Gij(pj − Bjkw
k) +

i√
2

∑

n 6=0

1

n

[
αi

neinσ + ᾱi
ne−inσ

]
e−inτ ,

2πPi(τ, σ) =pi +
i√
2

∑

n 6=0

[
Et

ij αj
neinσ + Eij ᾱj

ne−inσ
]
e−inτ ,

X̃i(τ, σ) =x̃i + piσ + τ
[
(G−BG−1B)ijw

j

+(BG−1) j
i pj

]
+

i√
2

∑

n 6=0

1

n

[
−Et

ijα
j
neinσ +Eijᾱ

j
ne−inσ

]
e−inτ .

(2.18)

Given (2.12), xa ∼ xa + 2π and wa and pa take integer values. Conjugate to the winding

charges wa, there are periodic coordinates x̃a satisfying x̃a ∼ x̃a + 2π. In the above

expansions we use

wi = {wa, wµ} = {wa, 0} ,

x̃i = {x̃a, x̃µ} = {x̃a, 0} ,
(2.19)

which state that there are no windings nor dual coordinates along the Minkowski directions.

We have the commutation relations:

[xi, pj ] = i δi
j , [ x̃i, w

j ] = i δ̂j
i , (2.20)

where δ̂j
i = diag{δ̂a

b , 0} so that the second relation is just [ x̃a, w
b ] = i δ̂b

a. Moreover

[αi
m, αj

n ] = [ ᾱi
m, ᾱj

n ] = m Gij δm+n,0 . (2.21)

Finally, we have the zero-modes given by

αi
0 =

1√
2

Gij
(
pj − Ejkw

k
)
,

αi
0 =

1√
2

Gij
(
pj + Et

jkw
k
)
.

(2.22)

Lowering the indices and writing in terms of the dimensionless coordinates xi and x̃i gives

α0i = − i√
2

(
∂

∂xi
− Eik

∂

∂x̃k

)
= −i

√
α′

2
Di ,

ᾱ0i = − i√
2

(
∂

∂xi
+ Et

ik

∂

∂x̃k

)
= −i

√
α′

2
D̄i ,

(2.23)
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where we introduced derivatives Di and D̄i with the dimensions of inverse length and used

pj = 1
i
∂j as well as wk = 1

i
∂̃k. The derivatives D and D̄ can then be written as

Di =
1√
α′

(
∂

∂xi
− Eik

∂

∂x̃k

)
,

D̄i =
1√
α′

(
∂

∂xi
+ Et

ik

∂

∂x̃k

)
.

(2.24)

We work in Lorentzian signature (both for the worldsheet and spacetime) and D and D̄ are

independent real derivatives with respect to right- and left-moving coordinates x̃i − Eijx
j

and x̃i + Et
ijx

j, respectively. Indeed, X̃i − EijX
j is a function of (σ − τ) and X̃i + Et

ijX
j

is a function of (σ + τ). For the noncompact directions there are no dual derivatives and

we have
∂

∂x̃i
=

{
∂

∂x̃a
, 0

}
. (2.25)

As a consequence, while Da 6= D̄a we have Dµ = D̄µ.

It is useful to introduce operators � and ∆, both quadratic in the α0 and ᾱ0 operators:

−α′

2
� ≡ 1

2
αi

0 Gijα
j
0 +

1

2
ᾱi

0 Gijᾱ
j
0 ,

−α′

2
∆ ≡ 1

2
αi

0 Gijα
j
0 −

1

2
ᾱi

0 Gijᾱ
j
0 .

(2.26)

We note that, in general

L0 − L̄0 = N − N̄ − α′

2
∆ , (2.27)

so that the level matching condition for fields with N = N̄ becomes the constraint ∆ = 0.

In terms of our derivatives, we get

� =
1

2
Di GijD

j +
1

2
D̄i GijD̄

j =
1

2

(
DiDi + D̄jD̄j

)
,

∆ =
1

2
Di GijD

j − 1

2
D̄i GijD̄

j =
1

2

(
DiDi − D̄jD̄j

)
.

(2.28)

Writing D2 ≡ DiDi and D̄iD̄i = D̄2 we have

� =
1

2
(D2 + D̄2) , ∆ =

1

2
(D2 − D̄2) . (2.29)

An explicit computation using the expressions for α0 and ᾱ0 gives

� =
1

α′

(
Gij ∂

∂xi

∂

∂xj
+ 2 (BG−1) j

i

∂

∂x̃i

∂

∂xj
+ (G − BG−1B)ij

∂

∂x̃i

∂

∂x̃j

)
. (2.30)

Note that the contribution to � from the non-compact directions is the expected term
1
α′ η

µν∂µ∂ν . Recalling that E is a constant, this can be rewritten as

� =
1

α′
∂t H(E) ∂ , with ∂ =

(
∂

∂x̃i
∂

∂xj

)
. (2.31)
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Another short computation, together with (2.25), shows that the operator ∆ takes the

form

∆ = − 2

α′

∑

i

∂

∂x̃i

∂

∂xi
= − 2

α′

∑

a

∂

∂x̃a

∂

∂xa
. (2.32)

Note that no background fields are required here. We can also write

∆ = − 1

α′
∂t η ∂ , with η =

(
0 I

I 0

)
. (2.33)

While � is a Laplacian for the metric H(E), ∆ is one for the O(D,D) invariant metric η.

In string field theory the physical state conditions L0 + L̄0 − 2 = 0 and L0 − L̄0 = 0

are treated very differently. The former arises from the free string field equation of motion

and gives equations of the form �ΦI = . . . . for the component fields ΦI(x, x̃). The latter

is imposed as a constraint on the string field, so that the fields with N = N̄ are required

to satisfy

∆ΦI = 0 .

As usual, we include the standard bc ghost system with ghost oscillators bn, cn, b̄n, c̄n.

Rectangular Tori. Let us consider the case where B̂ab = 0 and the metric is diagonal.

If Ra denotes the physical radius of the circle Xa ∼ Xa + 2π we have

Êab = Ĝab =
R2

a

α′
δab , Ĝab =

α′

R2
a

δab . (2.34)

For the derivatives we find

Da =
1√
α′

(
∂

∂xa
− R2

i

α′
δab

∂

∂x̃b

)
, D̄a =

1√
α′

(
∂

∂xa
+

R2
i

α′
δab

∂

∂x̃b

)
,

� =
1

α′

(
ηµν∂µ∂ν +

α′

R2
i

δab ∂

∂xa

∂

∂xb
+

R2
i

α′
δab

∂

∂x̃a

∂

∂x̃b

)
.

(2.35)

We can introduce coordinates ua and ũa that have physical lengths (repeated indices not

summed)

ua = Ra xa , ua ∼ ua + 2πRa , ũa =
α′

Ra
x̃a , ũa ∼ ũa + 2π

α′

Ra
. (2.36)

For the noncompact directions we can take uµ =
√

α′xµ. We then get

Da =
Ra√
α′

(
∂

∂ua
− δab

∂

∂ũb

)
, D̄a =

Ra√
α′

(
∂

∂ua
+ δab

∂

∂ũb

)
,

� = ηµν ∂

∂uµ

∂

∂uν
+ δab ∂

∂ua

∂

∂ub
+ δab

∂

∂ũa

∂

∂ũb

.

(2.37)
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2.3 Quadratic action from string field theory

The closed string field with N = N̄ = 1 takes the form

|Ψ〉 =

∫
[dp]

(
−1

2
eij(p)αi

−1ᾱ
j
−1 c1c̄1 + e(p) c1c−1 + ē(p) c̄1c̄−1

+ i

√
α′

2

(
fi(p) c+

0 c1α
i
−1 + f̄j(p) c+

0 c̄1ᾱ
j
−1

)
|p〉 .

(2.38)

We have used
∫

[dp] to denote the integral over the continuous momenta pµ and the sum over

the discrete momenta pa and discrete winding wa so that, for example, e(p) = e(pµ, pa, w
a).

The string field has ghost number two: each term includes two ghost oscillators acting on

the ghost-number zero state |p〉. In the above c±0 = 1
2(c0 ± c̄0) and we define b±0 = b0 ± b̄0,

so that {c±0 , b±0 } = 1. As required, b−0 |Ψ〉 = 0 because b−0 |p〉 = 0 and the ghost oscillator c−0
does not appear in |Ψ〉. This expansion of the string field features five momentum-space

component fields: eij , e, ē, f, and f̄ .

We wish to construct the quadratic action, given by

(2κ2)S(2) = − 2

α′
〈Ψ| c−0 Q|Ψ〉 . (2.39)

Here Q is the (ghost-number one) BRST operator of the conformal field theory and 〈Ψ|
denotes the BPZ conjugate of the string field |Ψ〉 in (2.38). The computation of S(2) is

straightforward6 and the result is

(2κ2)S(2) =

∫
[dx dx̃]

[
1

4
eij�eij + 2ē � e − fi f

i − f̄i f̄
i

− f i
(
D̄jeij − 2Diē

)
+ f̄ j

(
Dieij + 2 D̄je

)]
.

(2.40)

Here
∫

[dxdx̃] =
∫

dnxµddxaddx̃a is an integral over all n + 2d coordinates of R
n−1,1 × T 2d.

The definitions of �,D, and D̄ were given in section 2.2. All indices are raised and lowered

with the metric Gij . The gauge parameter |Λ〉 for the linearised gauge transformations is

|Λ〉 =

∫
[dp]

(
i√
2α′

λi(p)αi
−1c1 −

i√
2α′

λ̄i(p) ᾱi
−1c̄1 + µ(p) c+

0

)
|p〉 . (2.41)

The string field Λ has ghost number one and is annihilated by b−0 . It encodes two vec-

torial gauge parameters λi and λ̄i and one scalar gauge parameter µ. The consistency

of the string field theory requires the level-matching conditions (1.7). As a result, the

fields eij , d, e, ē, fi, f̄i and the gauge parameters λ, λ̄, µ must be annihilated by ∆ (defined

in (2.32)):

∆eij = ∆d = ∆e = ∆ē = ∆fi = ∆f̄i = 0 , ∆λi = ∆λ̄i = ∆µ = 0 . (2.42)

The quadratic string action (2.39) is invariant under the gauge transformations

δ|Ψ〉 = Q|Λ〉 . (2.43)

6We use the inner product 〈p′| c−1c̄−1c
−

0 c+

0 c1c̄1 |p〉 = (2π)n+2d δ(p − p′). The BRST operator is Q =

−α′

2
c+

0 � + α0 ·
`

α−1c1 + c−1α1

´

+ ᾱ0 ·
`

ᾱ−1c̄1 + c̄−1ᾱ1

´

− b+

0 (c−1c1 + c̄−1c̄1) + . . ..
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Expanding this equation using (2.41) and (2.38) gives the following gauge transformations

of the component fields:

δeij = Diλ̄j + D̄jλi ,

δfi = −1

2
� λi + Diµ ,

δf̄i =
1

2
� λ̄i + D̄iµ ,

δe = −1

2
Diλi + µ ,

δē =
1

2
D̄iλ̄i + µ .

(2.44)

We can now introduce fields d and χ by

d =
1

2
(e − ē) , and χ =

1

2
(e + ē) . (2.45)

The gauge transformations of d and χ are

δd = −1

4
(Diλi + D̄iλ̄i) ,

δχ = −1

4
(Diλi − D̄iλ̄i) + µ .

(2.46)

We can use µ to make the gauge choice

χ = 0 .

After this choice is made, gauge transformations with arbitrary λ and λ̄ require compensat-

ing µ transformations to preserve χ = 0. These do not affect d or eij , as neither transforms

under µ gauge transformations. It does change the gauge transformations of f and f̄ , but

this is of no concern here as these auxiliary fields will be eliminated using their equations

of motion. Therefore, we set e = d and ē = −d in (2.40) and eliminate the auxiliary fields

fi and f̄i, using

fi = −1

2

(
D̄jeij − 2Diē

)
, f̄j =

1

2

(
Dieij + 2D̄je

)
. (2.47)

The result is the following quadratic action

(2κ2)S(2) =

∫
[dxdx̃]

[
1

4
eij�eij +

1

4
(D̄jeij)

2 +
1

4
(Dieij)

2 − 2 dDiD̄jeij − 4 d� d

]
.

(2.48)

The gauge transformations generated by λ are

δλeij = D̄jλi ,

δλd = −1

4
D · λ ,

(2.49)

and the gauge transformations generated by λ̄ are

δλ̄eij = Diλ̄j ,

δλ̄d = −1

4
D̄ · λ̄ ,

(2.50)
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where we use a dot to indicate index contraction: a ·b ≡ aibi. The action is invariant under

the Z2 symmetry

eij → eji , Di → D̄i , D̄i → Di , d → d , (2.51)

which, as we will discuss later, is related to the invariance of the closed string theory under

orientation reversal. For our present purposes we note that this relates the δλ and δλ̄

transformations, so that invariance under this Z2 and δλ implies invariance under δλ̄.

A short computation using (2.29) shows that the variation δ = δλ + δλ̄ of the ac-

tion (2.48) gives

(2κ2) δS(2) =

∫
[dxdx̃]

[
1

2
eij∆(D̄jλi − Diλ̄j) + 2d∆(D · λ − D̄ · λ̄)

]
. (2.52)

As expected, the variation vanishes only if we use the constraint ∆ = 0. Note that it is

sufficient for the invariance of the quadratic action that the parameters satisfy the con-

straints ∆λ = ∆λ̄ = 0. We have attempted to relax the constraints by adding extra fields,

but have been unable to find a gauge invariant action without constraints.

The action (2.48) and the associated gauge transformations are completely general.

They describe the dynamics of fluctuations about the toroidal background with background

field Eij . This background field enters the action through the derivatives, as can be seen

from (2.24).

2.4 Comparison with conventional actions

We can compare our general free theory (2.48) with the one discussed in section 2.1. For this

we scale the coordinates by
√

α′ to give them dimensions of length and the derivatives (2.24)

become

Di = ∂i − ∂̃i − Bik∂̃
k ,

D̄i = ∂i + ∂̃i − Bik∂̃
k ,

(2.53)

where we defined

∂̃i ≡ Gik∂̃
k = Gik

∂

∂x̃k
. (2.54)

Then

� = ∂2 + ∂̃2 + (Bij ∂̃
j)2 − 2Bij∂

i∂̃j , and ∆ = −2∂i∂̃
i . (2.55)

Here Gij is used to raise and lower indices and ∂2 = Gij∂i∂j , etc. For simplicity we will

consider backgrounds with Bij = 0. The derivatives and laplacians above become

Di = ∂i − ∂̃i , D̄i = ∂i + ∂̃i , � = ∂2 + ∂̃2 , and ∆ = −2 ∂i∂̃
i . (2.56)

We decompose the field eij into its symmetric and antisymmetric parts:

eij = hij + bij , with hij = hji , bij = −bji . (2.57)

– 16 –



J
H
E
P
0
9
(
2
0
0
9
)
0
9
9

The action (2.48) then gives

(2κ2)S(2) =

∫
[dxdx̃]

[
1

4
hij∂2hij +

1

2
(∂jhij)

2 − 2 d ∂i∂j hij − 4 d ∂2 d

+
1

4
hij ∂̃2hij +

1

2
(∂̃jhij)

2 + 2 d ∂̃i∂̃j hij − 4 d ∂̃2 d

+
1

4
bij∂2bij +

1

2
(∂jbij)

2

+
1

4
bij ∂̃2bij +

1

2
(∂̃jbij)

2

+ (∂kh
ik)(∂̃jbij) + (∂̃khik)(∂jb

ij) − 4 d ∂i∂̃jbij

]
.

(2.58)

To appreciate this result, we recall the standard action Sst for gravity, Kalb-Ramond, and

dilaton fields

(2κ2)Sst =

∫
dx

√−g e−2φ

[
R − 1

12
H2 + 4(∂φ)2

]
. (2.59)

We expand to quadratic order in fluctuations using gij = Gij + hij , φ = d + 1
4Gijhij , and

bij = Bij + bij , with constant Gij and Bij . It follows that Hijk = ∂ibjk + · · · , and we find

(2κ2)S
(2)
st =

∫
dx L[h, b, d; ∂ ] , (2.60)

where

L[h, b, d; ∂ ] =
1

4
hij∂2hij +

1

2
(∂jhij)

2 − 2 d ∂i∂j hij − 4 d ∂2 d

+
1

4
bij∂2bij +

1

2
(∂jbij)

2 .

(2.61)

Comparing with (2.60) we see that our action (2.58) can be written as

(2κ2)S(2) =

∫
[dxdx̃]

[
L[h, b, d; ∂ ] + L[h, b,−d; ∂̃ ]

+ (∂kh
ik)(∂̃jbij) + (∂̃khik)(∂jb

ij) − 4 d ∂i∂̃jbij

]
.

(2.62)

While in (2.60) the fields depend only on the spacetime coordinates xi, here they depend

on x̃ also. The lagrangian L appears twice, first with ordinary derivatives ∂ and then

with dual derivatives ∂̃, together with d → −d. Finally, in the last line we have unusual

terms with mixed derivatives. They introduce novel quadratic couplings between the met-

ric and the Kalb-Ramond field! Finally, there is a new coupling of the dilaton to the

Kalb-Ramond field.

We now turn to the symmetries. The linearised version of the standard action (2.60)

is invariant under linearised diffeomorphisms:

δhij = ∂iǫj + ∂jǫi ,

δbij = 0 ,

δd = −1

2
∂ · ǫ ,

(2.63)
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as well as antisymmetric tensor gauge transformations:

δhij = 0 ,

δbij = −∂iǫ̃j + ∂j ǫ̃i ,

δd = 0 .

(2.64)

Note that the scalar dilaton φ ≡ d+ 1
4Gijhij is invariant under linearised diffeomorphisms.

The symmetries of the double field theory (2.58) are (2.49) and (2.50). Defining

ǫi ≡
1

2
(λi + λ̄i) , ǫ̃i ≡

1

2
(λi − λ̄i) , (2.65)

we can rewrite these gauge transformations in a more familiar form. The transformations

with parameter ǫ are

δhij = ∂iǫj + ∂jǫi ,

δbij = −(∂̃iǫj − ∂̃jǫi) ,

δd = −1

2
∂ · ǫ .

(2.66)

These give transformations of the same form as the linearised diffeomorphisms (2.63) to-

gether with an exotic gauge transformation of bij in which dual derivatives ∂̃ act on the

parameter. The transformations with parameter ǫ̃ are

δ̃hij = ∂̃iǫ̃j + ∂̃j ǫ̃i ,

δ̃bij = −(∂iǫ̃j − ∂j ǫ̃i) ,

δ̃d =
1

2
∂̃ · ǫ̃ .

(2.67)

Comparing with (2.64), we see Kalb-Ramond gauge transformations with parameter ǫ̃

together with gravity transformations that are linearised diffeomorphisms with ∂ replaced

by ∂̃. Note that this time the scalar dilaton is φ̃ ≡ d− 1
4Gijhij , since this is invariant under

linearised dual diffeomorphisms. Also interesting is that the transformation of d under

these dual diffeomorphisms is of the same form as the one in (2.66), but with opposite sign.

While the Minkowski space theory has a gauge invariant dilaton φ = d + 1
4h, there is none

in the toroidal theory. We certainly have δφ = 0, but δ̃φ = ∂̃ · ǫ̃. There is no dilaton that

is invariant under both ǫ and ǫ̃ transformations.

3 Cubic action and gauge transformations

In this section we use closed string field theory to compute the cubic interactions for the

string field (2.38) together with the gauge transformations with parameter (2.41) to linear

order in the fields. The computation is laborious since there are many terms to consider

but the techniques are standard in string field theory.

In the action we have kept only the terms with a total number of derivatives (D or

D̄) less than or equal to two. In the gauge transformations we have kept the terms linear
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in the fields and which are relevant to an action with two derivatives. This strategy was

expected to lead to an action that is exactly gauge invariant to this order, just as it does

for string field actions around flat space. The constraint ∆ = 0 does not involve terms

with different numbers of derivatives so no complication is expected.

The string field theory product used to define the interactions involves a projector. The

string fields satisfy the constraint L0 − L̄0 = 0 and the projector imposes the constraint

L0 − L̄0 = 0 on the product. Such projector should lead to a projector that imposes the

constraint ∆ = 0 in our field theory products, and thus in our interactions. We discuss

this in detail in section 5. As we show there, however, when the fields satisfy the ∆ = 0

constraint no additional projectors are needed for the cubic interactions. The projectors

are needed in the gauge transformations, in the terms that involve a product of a field and a

gauge parameter. In order to avoid cluttering the notation we will leave them implicit. As

explained in section 5 the check of gauge invariance to this order is correctly done naively,

ignoring the projectors.

The vertex operators for strings on a torus include cocycles that lead to momentum-

dependent sign factors in the exact cubic string field theory interactions, and these sign

factors should also appear in our cubic double field theory action. These factors are not

expected to affect gauge invariance to cubic order. We present the results of this section

without cocycle-induced sign factors, but will discuss these further in section 5.

As a check of our results, we used the gauge transformations obtained in section 3.2 to

independently construct the cubic term in the action by the Noether method. The result

is exactly the same cubic action that we present here. We have also checked that the

gravitational sector of the action agrees with that in the standard action (2.59), expanded

to cubic order with the help of [33], for fields independent of x̃ and in a gauge in which the

metric perturbation is traceless.

3.1 Cubic terms and gauge transformations from CSFT

The string field theory action is non-polynomial and takes the form

(2κ2)S = − 2

α′

[
〈Ψ|c−0 Q|Ψ〉 +

1

3
{Ψ,Ψ ,Ψ} +

1

3 · 4{Ψ,Ψ ,Ψ,Ψ} + · · ·
]
. (3.1)

Here {Ψ,Ψ,Ψ} = 〈Ψ|c−0 [Ψ,Ψ]〉 and {Ψ,Ψ,Ψ,Ψ} = 〈Ψ|c−0 [Ψ,Ψ,Ψ]〉 where [·, ·] is the closed

string product and [·, ·, ·] is a triple product of string fields. The higher order terms require

the introduction of products of all orders, with relations between them implied by gauge

invariance. The closed string products (discussed further in section 5) are graded commu-

tative and therefore symmetric when the entries are even vectors in the state space. The

string field Ψ is even. The gauge transformations are

δλΨ = Qλ + [λ ,Ψ] + · · · , (3.2)
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where the dots denote terms with higher powers of the string field Ψ. The computation of

the action to cubic order in the string field (2.38) gives:

(2κ2)S =

∫
[dxdx̃]

[
1

4
eij�eij + 2ē � e − fif

i − f̄if̄
i − f i

(
D̄jeij − 2Diē

)
+ f̄ j

(
Dieij + 2D̄je

)

− 1

8
eij

(
−(Dke

kj)(D̄le
il) − (Dke

kl)(D̄le
ij) − 2 (Diekl)(D̄

jekl)

+ 2(Diekl) (D̄lekj) + 2(Dkeil)(D̄jekl)
)

+
1

2
eijf

if̄ j − 1

2
fif

i ē +
1

2
f̄if̄

i e

− 1

8
eij

(
(DiD̄je)ē − (Die)(D̄j ē) − (D̄je)(Diē) + eDiD̄j ē

)

− 1

4
f i
(
eijD̄

j ē + D̄j(eij ē)
)

+
1

4
f i
(
(Die)ē − eDiē

)

− 1

4
f̄ j
(

eijD
ie + Di(eij e)

)
+

1

4
f̄ j
(

(D̄je)ē − e D̄j ē
)]

.

(3.3)

All fields are assumed to satisfy the constraint ∆ = 0. The above action is invariant under

the exchanges

eij ↔ eji , Di ↔ D̄i , fi ↔ − f̄i , e ↔ − ē . (3.4)

This discrete symmetry implies we need only concern ourselves with the gauge transfor-

mations generated by λ and by µ. Those generated by λ̄ can be written in terms of the λ

ones and the discrete transformations above. For the λ gauge transformations we find, to

linear order in the fields,

δλeij = D̄jλi−
1

4

[
λkDiekj−(Diλ

k)ekj+Dk(λiekj)+(Dkλi)ekj−Dk(λkeij)−λkD
keij

]

− 1

4

[
λiD̄j ē − (D̄jλi)ē

]
+

1

2
λif̄j,

δλe = −1

2
Diλi −

1

4
f iλi +

1

8

(
eDiλi + 2(Die)λi

)
,

δλē =
1

16

(
ēDiλi + 2(Diē)λi

)
.

(3.5)

We have not written the gauge transformations for the auxiliary fields fi and f̄i since they

are quite cumbersome and will not be needed. The µ gauge transformations, to linear order

in the fields, are

δµ eij = 0 ,

δµ e = µ − 3

8
µ e ,

δµ ē = µ +
3

8
µ ē .

(3.6)
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To preserve the constraint, the variation of any field must be annihilated by ∆. The field-

independent terms in the variations meet this requirement as the gauge parameters are in

the kernel of ∆. The terms involving a product of a field and a gauge parameter are not

guaranteed to satisfy the constraint and a projection is needed. In section 5 we discuss the

natural projector [[ · ]] that satisfies ∆[[A]] = 0 for arbitrary A(x, x̃). All terms linear in

the fields in the above gauge transformations include an implicit [[. . .]] around them. We

do not write these brackets here to avoid cluttering.

The closed string field theory predicts a gauge algebra that is quite intricate [3]: the

bracket of two gauge transformations is in general a gauge transformation with field depen-

dent structure constants and the gauge algebra only closes on-shell. To lowest nontrivial

order we find

[δλ1
, δλ2

]Ψ = δΛΨ + (on-shell = 0 terms) with Λ = [λ2, λ1] + . . . , (3.7)

where the dots represent field dependent terms. The product of parameters [λ2, λ1] is

antisymmetric under the interchange 1 ↔ 2 since the λ’s have ghost number one. For

gauge parameters λ1 and λ2 the computation of the closed string product, keeping the

lowest number of derivatives, gives

Λi =
1

2

[
(λ2 · D)λi

1 − (λ1 · D)λi
2

]

+
1

4

[
λ1 · Diλ2 − λ2 · Diλ1

]

+
1

4

[
λi

1(D · λ2) − λi
2(D · λ1)

]
≡ {λ2, λ1}i .

(3.8)

In the above, we introduced a bracket {· , ·} of two vectors, defined by the right hand side.

It is the bracket induced by the closed string product and resembles the Lie bracket of

vector fields, but does not coincide with it. One can show that ghost number conservation

implies that the commutator of two λ transformations does not give a λ̄ transformation

nor does it give a µ-transformation. In (3.8) the projection brackets [[. . . ]] act on the right

hand side, since any allowed gauge parameter must be in the kernel of ∆. We have verified

the structure of Λi in (3.8) by computing explicitly the leading inhomogeneous term in the

commutator of two transformations on eij . The projectors cause no complication.

It is of interest to see if the bracket {λ2, λ1} forms a Lie algebra. The first line of (3.8)

is the Lie derivative, but the other two lines are exotic. We have found that

{{λ2, λ1}, λ3} + {{λ3, λ2}, λ1} + {{λ1, λ3}, λ2} 6= 0 . (3.9)

We have checked that this non-vanishing result occurs even if all products of λ’s are in the

kernel of ∆. So the failure of the Jacobi identity is not only due to the projectors implicit

in the bracket { , }. The fact that the Jacobi identity does not hold is a reflection of the

homotopy-Lie algebra structure of the string field theory gauge algebra.

Fixing the µ gauge symmetry. We noted in the quadratic theory that the µ symmetry

could be used to set e = d and ē = −d in the action. A similar result holds at the cubic
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level, as we discuss now. First note that the µ transformations in (3.6) give

δµ(e − ē) = 0 − 3

8
µ(e + ē) ,

δµ(e + ē) = 2µ − 3

8
µ(e − ē) .

(3.10)

As a result, the following fields

d ≡ 1

2
(e − ē) +

3

64
(e + ē)2 ,

χ ≡ 1

2
(e + ē) +

3

32
(e2 − ē2) ,

(3.11)

have transformations in which terms linear in fields vanish:

δµd = 0 ,

δµχ = µ .
(3.12)

We now use µ to set χ = 0. Since

χ =
1

2
(e + ē)

(
1 +

3

16
(e − ē)

)
, (3.13)

the perturbative solution to χ = 0 is

e = −ē . (3.14)

It then follows from (3.11) that in this gauge

d =
1

2
(e − ē) , (3.15)

and we can take e = d and ē = −d in evaluating the action and the gauge transformations.

Note that λ gauge transformations now require compensating µ transformations to preserve

the gauge χ = 0. Indeed, it follows from

(δµ + δλ)χ = µ − 1

4
D · λ + non-linear , (3.16)

that we must set µ = 1
4D · λ + . . . and therefore the final λ gauge transformations take

the form δλ + δµ= 1

4
D·λ+... . Since δµeij = 0 and δµd = 0, this only affects the auxiliary

fields. Since auxiliary fields will be eliminated, we need not concern ourselves with these

compensating gauge transformations.

3.2 Simplifying the gauge transformations

We now turn to simplifying the λ-gauge transformations of eij and d, dropping all terms of

quadratic and higher order in the fields. The field equations for the auxiliary fields f and

f̄ have non-linear terms, but to the order we are working it suffices to substitute for f and
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f̄ in the gauge transformation (3.5) using the linearised field equations (2.47). From (3.15)

we have

δd =
1

2
(δe − δē) . (3.17)

In the formulae for δd, and δeij , we can set e = d and ē = −d. Then (3.5) gives

δλeij = D̄jλi − 1

4

[
λkDiekj − (Diλ

k)ekj + λiD
kekj + 2(Dkλi)ekj

− (D · λ)eij − 2λkD
keij

]
+

1

4

[
λiD̄jd − (D̄jλi)d

]
+

1

4
λi (Dkekj + 2D̄jd) ,

δλd =
1

2

[
−1

2
Diλi −

1

4
f iλi +

1

8
(eDiλi + 2(Die)λi) −

1

16
(ēDiλi + 2(Diē)λi)

]
.

(3.18)

Next we look for redefinitions of the fields and gauge parameters. After some manip-

ulation the above transformations can be written as

δλeij = D̄j

(
λi +

3

4
λid

)
+

1

2

[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]

+ Di

(
−1

4
λkekj

)
− δλ(eijd) ,

δλd = −1

4
Di

(
λi +

3

4
λid

)
+

1

2
(λ · D) d

− 1

4
D̄j

(
−1

4
λkekj

)
− 1

32
δλ(eije

ij) − 9

16
δλ d2 .

(3.19)

We redefine the gauge parameter λi by taking λi + 3
4λid → λi, without affecting the

remaining terms linear in fields. Moreover, note that the first term on the second line in

each of the above transformations can be thought of as linearised transformations with

an effective barred parameter λ̄ = −1
4λkekj. The δλ̄ transformation with parameter λ̄ =

−1
4λkekj leaves the quadratic action invariant, while it changes the cubic action by terms

cubic in the fields. In checking the invariance of the quadratic plus cubic action up to

terms quadratic in the fields, these δλ̄ transformations constitute a separate symmetry and

so need not be included in the λ transformations. We can therefore ignore them and we

will do so. We then have

δλ

(
eij + eijd

)
= D̄jλi +

1

2

[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]
,

δλ

(
d − 1

32
eije

ij − 9

16
d2

)
= −1

4
D · λ +

1

2
(λ · D) d .

(3.20)

We redefine the fields

e′ij = eij + eijd ,

d′ = d +
1

32
eije

ij +
9

16
d2 .

(3.21)

to give primed fields that have simple gauge transformations

δλe′ij = D̄jλi +
1

2

[
(Diλ

k)e′kj − (Dkλi)e
′
kj + λkD

ke′ij

]
,

δλd′ = −1

4
D · λ +

1

2
(λ · D) d′ .

(3.22)
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After these field redefinitions, it is convenient to drop the primes to simplify notation. We

do so in what follows.

3.3 Simplifying the action

We now consider the full action (3.3) and first fix the µ gauge symmetry by setting e = d

and ē = −d. We then eliminate the auxiliary fields f and f̄ and, after a fair amount of

straightforward work, we find

(2κ2)S =

∫
[dxdx̃]

[
1

4
eij�eij +

1

4
(D̄jeij)

2 +
1

4
(Dieij)

2 − 2 dDiD̄jeij − 4 d� d

− 1

8
eij

(
−(Dke

kl)(D̄le
ij) − 2 (Diekl)(D̄

jekl)

+ 2(Diekl) (D̄lekj) + 2(Dkeil)(D̄jekl)
)

+
1

2
d
(
eij D̄kD̄

jeik + eij DlD
ielj + (Dieij)

2 + (D̄jeij)
2
)

− 1

4
eij (DiD̄jd)d − 9

4
eij(D

id)(D̄jd) − 1

2
d2

� d

]
.

(3.23)

This is the action expected to be invariant under the original gauge transformations (3.18).

Since we simplified those gauge transformations by the field redefinitions (3.21) we now

perform these same field redefinitions in the action. From (3.21), we set

eij = e′ij − e′ijd
′ .

d = d′ − 1

32
e′ije

′ij − 9

16
d′2 .

(3.24)

to obtain an action in terms of the primed fields. Dropping all primes, the result is

(2κ2)S =

∫
[dxdx̃]

[
1

4
eij�eij +

1

4
(D̄jeij)

2 +
1

4
(Dieij)

2 − 2 dDiD̄jeij − 4 d� d

+
1

4
eij

(
(Diekl)(D̄

jekl) − (Diekl) (D̄lekj) − (Dkeil)(D̄jekl)
)

+
1

2
d
(
(Dieij)

2+(D̄jeij)
2+

1

2
(Dkeij)

2+
1

2
(D̄keij)

2+2eij(DiD
kekj+D̄jD̄

keik)
)

+ 4 eijdDiD̄jd + 4 d2
� d

]
.

(3.25)

The discrete Z2 symmetry (2.51) we found in the quadratic theory is preserved here. This

is essentially manifest for all terms except the e3 terms, where it takes a small computation

to confirm the symmetry. The transformations are written again here for convenience

Z2 transformations : eij → eji , Di → D̄i , D̄i → Di , d → d. (3.26)

The gauge transformations are those in (3.22)

δλeij = D̄jλi +
1

2

[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]
,

δλd = −1

4
D · λ +

1

2
(λ · D) d .

(3.27)
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The discrete symmetry (3.26) of the action S is fundamental to our analysis. It implies

that gauge transformations with barred gauge parameters obtained from (3.27) by the

discrete symmetry are also invariances of S. The action S then has the appropriate doubled

symmetry. For future reference the barred gauge transformations are

δλ̄eij = Diλ̄j +
1

2

[
(D̄j λ̄

k)eik − (D̄kλ̄j)eik + λ̄kD̄
keij

]
,

δλ̄d = −1

4
D̄ · λ̄ +

1

2
(λ̄ · D̄) d .

(3.28)

In all of the above gauge transformations, there is an implict projection [[ · ]] to the kernel

of ∆ for the terms linear in the fields.

As a check of the action S we used the Noether method to construct a cubic term to

be added to the quadratic action for which the action is invariant under (3.27), up to terms

cubic or higher in the fields. The result was precisely the action S given above. We note

that the cubic action can be rewritten in a suggestive way (up to quartic terms) as

(2κ2)S =

∫
[dxdx̃] e−2d

[
−1

4
K − 2 eijD

iD̄jd + 2(Dd)2 + 2(D̄d)2
]

. (3.29)

Here K = K2 + K3, where

K2 = (Dieij)
2 + (D̄jeij)

2 +
1

2
(Dkeij)

2 +
1

2
(D̄keij)

2 + 2eij(DiD
kekj + D̄jD̄

keik) , (3.30)

coincides, up to total derivatives, with the quadratic Lagrangian for eij and

K3 = − eij

(
(Diekl)(D̄

jekl) − (Diekl) (D̄lekj) − (Dkeil)(D̄jekl)
)

, (3.31)

coincides with the cubic Lagrangian for eij . This suggests that K may give the leading

terms in the expansion of some curvature.

We can now reconsider the algebra of gauge transformations discussed around equa-

tion (3.8). Our field redefinitions cause the mixing of the unbarred and barred transfor-

mations, so some of the simplicity is lost. Nevertheless the answers are still reasonably

compact. The commutation of two gauge transformations with parameters (λ1, λ̄1) and

(λ2, λ̄2) is a gauge transformation with parameters (Λ, Λ̄) that to leading order are field

independent:

Λi =
1

2

[
(λ2 · D + λ̄2 · D̄)λi

1 − (λ1 · D + λ̄1 · D̄)λi
2

]

+
1

4

[
λ1 · Diλ2 − λ2 · Diλ1

]
− 1

4

[
λ̄1 · Diλ̄2 − λ̄2 · Diλ̄1

]
,

Λ̄i =
1

2

[
(λ2 · D + λ̄2 · D̄) λ̄i

1 − (λ1 · D + λ̄1 · D̄) λ̄i
2

]

− 1

4

[
λ1 · D̄iλ2 − λ2 · D̄iλ1

]
+

1

4

[
λ̄1 · D̄iλ̄2 − λ̄2 · D̄iλ̄1

]
.

(3.32)

The constraint ∆ = 0 on the parameters is used in calculating the algebra. The same

caveats discussed earlier apply here. The commutator of gauge transformations to all

orders in the fields is expected to include field dependent structure constants as well as

terms that vanish on-shell. There is an implicit projection [[ ·]] in the above right-hand

sides so that (Λ, Λ̄) are in the kernel of ∆. Finally, the brackets [ ·, ·] implicit above do not

satisfy the Jacobi identity.
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3.4 Conventional field theory limits

In this section we examine the gauge transformations in the limits where there is depen-

dence on either just x or just x̃ coordinates and show that we recover the expected results.

Interestingly, these two limits require two different sets of field redefinitions and these break

the discrete Z2 symmetry of the theory.

We wish to compare our results with the gauge transformations of the conventional

(undoubled) theory of a metric gij(x
k), Kalb-Ramond field bij(x

k), and a dilaton φ(xk).

Under diffeomorphisms with parameter ξi and antisymmetric gauge transformations with

parameter αi, the first two fields transform as

δgij = Lξgij ,

δbij = Lξbij + ∂iαj − ∂jαi .
(3.33)

For the dilaton we have

δφ = ξi∂iφ . (3.34)

Here Lξ is the Lie derivative with respect to ξi. For any rank two tensor rij, the Lie

derivative with respect to ξi takes the form

Lξ rij = (∂iξ
k) rkj + (∂jξ

k) rik + ξk∂krij . (3.35)

The above form of the standard diffeomorphisms is all we need to compare with our results.

It is interesting, however, to write the transformations more geometrically. We first note

that (3.33) can be written as

δgij = ∇iξj + ∇jξi ,

δbij = Hijkξ
k + ∂iξ̃j − ∂j ξ̃i ,

(3.36)

where ∇ is the covariant derivative with Levi-Civita connection Γ, H is the field strength

Hijk = ∂ibjk + ∂jbki + ∂kbij , (3.37)

and we have defined

ξi ≡ gijξ
j , ξ̃i ≡ αi − bijξ

j . (3.38)

Introducing the field

Eij = gij + bij , (3.39)

the transformations can be written as transformations of E :

δEij = ∇iξj + ∇jξi + Hijkξ
k + ∂iξ̃j − ∂j ξ̃i

→ δEij = ∇̂iξj + ∇̂jξi + ∂iξ̃j − ∂j ξ̃i ,
(3.40)

where ∇̂ is the derivative for the connection with torsion

Γ̂k
ij = Γk

ij − gklHijl =
1

2
gkl (∂iElj + ∂jEil − ∂lEij) . (3.41)
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The transformation (3.40) encodes nicely the full gauge structure of the fields. For the

dilaton transformation (3.34) it is convenient to define a field d by

e−2d ≡ √−g e−2φ . (3.42)

Since
√−g is a density we find that e−2d is also a density:

δe−2d = ∂i(e
−2dξi) . (3.43)

Returning to the task at hand, we split the fields into constant background fields G,B

plus fluctuations

gij = Gij + hij ,

bij = Bij + bij .
(3.44)

The transformations (3.33) then imply transformations for the fluctuations. A short com-

putation shows that they can be written as

δhij = ∂iǫj + ∂jǫi + Lξhij ,

δbij = ∂iǫ̃j − ∂j ǫ̃i + Lξbij ,
(3.45)

where

ǫi = Gijξ
j , ǫ̃i = αi − Bijξ

j . (3.46)

Defining as usual the field ěij that puts together the two types of fluctuations,

ěij = hij + bij , (3.47)

we readily find that it transforms as

δěij = (∂iǫj + ∂jǫi) + (∂iǫ̃j − ∂j ǫ̃i) + Lǫěij

= (∂iǫj + ∂jǫi) + (∂iǫ̃j − ∂j ǫ̃i) + ((∂iǫ
k)ěkj + (∂jǫ

k)ěik + ǫk∂kěij) ,
(3.48)

where indices are raised and lowered using Gij . This is our final form for the conventional

gauge transformations, to be compared with the result arising from the cubic theory we

have constructed.

Our analysis requires both unbarred and barred gauge parameters, so we put together

the gauge transformations (3.27) and (3.28) to obtain the transformations

δeij =D̄jλi +
1

2

[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]

+ Diλ̄j +
1

2

[
(D̄j λ̄

k)eik − (D̄kλ̄j)eik + λ̄kD̄
keij

]
,

(3.49)

as well as

δd = −1

4
(D · λ + D̄ · λ̄) +

1

2
(λ · D + λ̄ · D̄) d . (3.50)

We can rearrange the former in the suggestive form

δeij = D̄jλi + Diλ̄j + (Diλ
k)ekj + (D̄j λ̄

k)eik +
1

2
(λkD

k + λ̄kD̄
k)eij

− 1

2

(
Diλ

k + Dkλi

)
ekj −

1

2

(
D̄jλ̄

k + D̄kλ̄j

)
eik .

(3.51)
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The first line, as we will see, contains terms that combine naturally to form Lie derivatives.

The above transformations are expected to receive corrections of quadratic and higher

order in eij, while those for ěij above are exact. The fields eij , ěij are related by non-linear

field redefinitions ěij = eij + O(e2) [30] and next we shall seek such redefinitions to bring

the transformations of eij to the same form as those for ěij . We then undertake a similar

analysis for the T-dual system, and find a different field redefinition is needed.

We now examine the above gauge transformations in two limits. The first is that when

fields have no x̃i dependence. The second is that when fields have no xi dependence. It is

convenient in both cases to use linear combinations of the gauge parameters:

ǫi ≡
1

2
(λi + λ̄i) , ǫ̃i ≡

1

2
(λi − λ̄i) . (3.52)

We now consider the two possible limits.

3.4.1 Fields with no x̃ dependence

In this case we can set ∂̃ equal to zero in the derivatives (2.24). It follows then that

D = D̄ = ∂, absorbing
√

α′ into the definition of the coordinates. All indices are raised or

lowered with Gij and Gij . The transformations with parameter ǫ are obtained from (3.51)

setting λi = λ̄i = ǫi:

δǫeij = ∂jǫi + ∂iǫj + (∂iǫ
k)ekj + (∂jǫ

k)eik + ǫk∂
keij −

1

2
(δǫei

k)ekj −
1

2
(δǫe

k
j)eik

= ∂jǫi + ∂iǫj + (∂iǫ
k)ekj + (∂jǫ

k)eik + ǫk∂
keij −

1

2
δǫ(ei

kekj) .

(3.53)

We therefore have

δǫ

(
eij +

1

2
ei

kekj

)
= ∂jǫi + ∂iǫj + (∂iǫ

k)ekj + (∂jǫ
k)eik + ǫk∂

keij . (3.54)

It follows that the field

e+
ij ≡ eij +

1

2
ei

kekj , (3.55)

transforms as

δǫ e+
ij = (∂iǫj + ∂jǫi) + Lǫe

+
ij , (3.56)

up to terms of order (e+
ij)

2.

The ǫ̃-gauge transformations are obtained from (3.51) setting λi = −λ̄i = ǫ̃i:

δ̃ǫ̃ eij = ∂j ǫ̃i − ∂iǫ̃j −
1

2
(δǫ̃ei

k)ekj −
1

2
(δǫ̃e

k
j)eik , (3.57)

so that

δ̃ǫ̃ e+
ij = ∂j ǫ̃i − ∂iǫ̃j , (3.58)

up to terms of order (e+
ij)

2. The transformations for e+
ij are precisely the standard gauge

transformations (3.48), up to higher order terms. This is what we wanted to show.
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Note that the full field (background plus fluctuation) with natural gauge transforma-

tions is

Eij ≡ Eij + e+
ij + cubic terms = Gij + Bij + eij +

1

2
ei

kekj + cubic terms , (3.59)

so that ěij = eij + 1
2ei

kekj , up to cubic terms. We now show that E has the expected gauge

transformations. Indeed, for ǫ̃ transformations (up to terms of quadratic in fields) we have

δ̃ǫ̃ Eij = ∂j ǫ̃i − ∂iǫ̃j . (3.60)

The ǫ transformations are a little more intricate. We first compute the Lie derivative of E :

LǫEij = (∂iǫ
k) Ekj + (∂jǫ

k) Eik + ǫk∂kEij

= (∂iǫ
k)Ekj + (∂jǫ

k)Eik + Lǫe
+
ij

= ∂iǫj + ∂jǫi − ∂i(Bjkǫ
k) + ∂j(Bikǫ

k) + Lǫe
+
ij

= δǫEij + δ̃BǫEij ,

(3.61)

where we used (3.56), noted that δǫEij = δǫe
+
ij , and recognised the presence of a δ̃ trans-

formation with parameter ǫ̃i = Bijǫ
j. We thus have a symmetry δ̄ǫ for which the transfor-

mation of E is through the Lie derivative (up to terms quadratic in fields):

δ̄ǫEij ≡ (δǫ + δ̃Bǫ)Eij = LǫEij . (3.62)

The gauge transformation of d is obtained from (3.50). For the δǫ transformations

(λ = λ̄ = ǫ) we find, up to terms quadratic in fields,

δǫd = −1

2
∂ · ǫ + ǫ · ∂d . (3.63)

This can be rewritten as

δǫe
−2d = ∂i(e

−2dǫi) , (3.64)

and agrees with (3.43) if d is the same as d, up to terms cubic in the fields. A short

calculation shows that δ̃ǫ̃d = 0, as would be expected.

3.4.2 Fields with no x dependence

The configuration dual to the one considered in section 3.4.1 has fields independent of

xa. In order to avoid the complication of indices running over non-compact directions

and toroidal directions we will consider the case in which there is no x dependence at all;

neither on the non-compact xµ nor on the toroidal xa. We will simplify further by only

considering the transformations with parameters λa and λ̄a and the components eab of eij .

For fields that do not depend on x, the derivative ∂i vanishes and the derivatives (2.24),

absorbing
√

α′ into the definition of the coordinates, take the form

Da = − Êac ∂̃c , D̄a = Êca ∂̃c . (3.65)
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We expect from T-duality that the theory based on x̃ coordinates sees the dual background

Ê′
ab = Ĝ′

ab + B̂′
ab = Ê−1

ab . As we will see later, the dual metric Ĝ′ is related to the original

metric Ĝ by

Ĝ′−1 = Ê Ĝ−1 Êt = Êt Ĝ−1 Ê . (3.66)

Note that Ĝ′−1 naturally has lower indices, just like Ê does. For example, from the above

we see that (Ĝ′−1)ab = Ê acĜ
cd Êbd . Thus we use Ĝ′−1 to lower indices of primed objects:

A′
a ≡ (Ĝ′−1)abA

′b . (3.67)

The fields and gauge parameters appropriate here are field redefinitions of the original

fields and gauge parameters whose forms are suggested by T-duality transformations. We

introduce the fluctuation field

e′
ab ≡ −(Ê−1)ac ecd (Ê−1)db . (3.68)

Note that this field has upper indices. In order to compute the gauge transformations we

use

δe′
ab

= −(Ê−1)ac δecd (Ê−1)db . (3.69)

For the gauge parameters we introduce new primed ones through the relations

λa = − Ê ab λ′b , λ̄a = Ê ba λ̄′b . (3.70)

All other gauge parameters will be taken to vanish.

Consider first the dilaton transformations (3.50), where indices, of course, are con-

tracted with the original metric Ĝ−1. We write this out explicitly

δ d = −1

4
Ĝab

(
Daλb + D̄aλ̄b

)
+

1

2
Ĝab

(
λaDb + λ̄aD̄b

)
d

= −1

4
Ĝab

(
Êac∂̃

c Êbdλ
′d + Êca∂̃

cÊdbλ̄
′d
)

+
1

2
Ĝab

(
Êacλ

′cÊbd∂̃
d + Êcaλ̄

′cÊdb∂̃
d
)
d ,

= −1

4
(Ĝ′−1)cd

(
∂̃c λ′d + ∂̃cλ̄′d

)
+

1

2
(Ĝ′−1)cd

(
λ′c∂̃d + λ̄′c∂̃d

)
d ,

(3.71)

where we made use of (3.65) and (3.70) to obtain the second line and (3.66) to obtain the

last line. This can now be rewritten as

δd = −1

4
∂̃ · [λ′ + λ̄′] +

1

2
[λ′ + λ̄′] · ∂̃d , (3.72)

where indices are contracted with Ĝ′−1. Taking λ̄′ = λ′ = ǫ′, this gives

δd = −1

2
∂̃ · ǫ′ + ǫ′ · ∂̃d , (3.73)

which can be rewritten as

δe−2d = ∂̃ · (e−2dǫ′) , (3.74)

and is of the same form as (3.43). Gauge transformations δ̃ of the dilaton with λ = −λ̄′

vanish on account of (3.72).
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Let us now turn to the gauge transformations (3.51) of eij where, again, all indices

are raised with Gij . We rewrite this result with lower-indexed fields and derivatives and

explicit G−1 factors:

δeab ≡ D̄bλa + Daλ̄b + Ĝcd(Daλd)ecb + Ĝcd(D̄bλ̄d)eac +
1

2
Ĝcd(λcDd + λ̄cD̄d)eab

− 1

2
Ĝcd
(
Daλd + Ddλa

)
ecb −

1

2
Ĝcd
(
D̄bλ̄d + D̄dλ̄b

)
eac .

(3.75)

Our task now is to manipulate the right hand side above. We replace D and D̄ by the

explicit forms in (3.65), write the gauge parameters in terms of the primed gauge parameters

in (3.70), simplify using (3.66), and finally evaluate (3.69). This takes some effort, but the

result is relatively simple:

δe′ab = ∂̃bλ′a + ∂̃aλ̄′b + (∂̃aλ′
c)e

′cb + (∂̃bλ̄′
c)e

′ac +
1

2
(λ′

c∂̃
c + λ̄′

c∂̃
c)e′ab

− 1

2
(Ĝ′−1)cd

[(
∂̃aλ′c + ∂̃cλ′a

)
e′db + e′ac

(
∂̃bλ̄′d + ∂̃pλ̄′d

)]
.

(3.76)

We first take the case when λ′ = λ̄′ = ǫ′. We find

δe′ab = ∂̃bǫ′a + ∂̃aǫ′b + (∂̃aǫ′c)e
′cb + (∂̃bǫ′c)e

′ac + ǫ′c∂̃
c e′ab − 1

2
δ
(
e′ac (Ĝ′−1)cde

′db
)
, (3.77)

which gives

δ

(
e′ab +

1

2
e′ac (Ĝ′−1)cde

′db

)
= ∂̃bǫ′a + ∂̃aǫ′b + (∂̃aǫ′c)e

′cb + (∂̃bǫ′c)e
′ac + ǫ′c∂̃

c e′ab . (3.78)

Note that the tilde derivatives naturally have the index up. The parameters ǫ′ naturally

have the index down, just like the coordinates, so that an infinitesimal diffeomorphism

takes the form x̃′
a = x̃a + ǫ′a.

For the case λ̄′ = −λ′ = −ǫ̃′, equation (3.76) gives

δ̃e′ab = ∂̃bǫ̃′a − ∂̃aǫ̃′b − 1

2
δ
(
e′ac (Ĝ′−1)cde

′db
)

, (3.79)

so that we now have

δ̃

(
e′ab +

1

2
e′ac (Ĝ′−1)cde

′db

)
= ∂̃bǫ̃′a − ∂̃aǫ̃′b . (3.80)

We define

ēab ≡ e′ab +
1

2
e′ac (Ĝ′−1)cde

′db , (3.81)

so that, to this order, our gauge transformations take the form

δ̃ēab = ∂̃bǫ̃′a − ∂̃aǫ̃′b ,

δēab = ∂̃bǫ′a + ∂̃aǫ′b + (∂̃aǫ′c)ē
cb + (∂̃bǫ′c)ē

ac + ǫ′c∂̃
c ēab .

(3.82)

These are the expected transformations.
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To give a clearer interpretation we now introduce a field that incorporates the back-

ground and the fluctuation. If we denote by Êab the inverse background field Êab = {Ê−1}
we now define

Eab ≡ Êab + ēab + O(e′
3
) . (3.83)

We now show that this has the expected gauge transformations, up to terms of order e′2.

We clearly have

δ̃Eab = ∂̃bǫ̃′a − ∂̃aǫ̃′b . (3.84)

Next, we aim to write δēab = δEab in terms of a Lie derivative. The Lie derivative of

Eab follows from the tensorial transformation

E ′ab(x̃′) =
∂x̃c

∂x̃′
a

∂x̃d

∂x̃′
b

Ecd(x̃) . (3.85)

The result is

Lǫ′Eab = (∂̃aǫ′c)Ecb + (∂̃bǫ′c)Eac + ǫ′c∂̃
c Eab . (3.86)

Using (3.83) this gives:

Lǫ′Eab = (∂̃aǫ′c)Ê
cb + (∂̃bǫ′c)Ê

ac + (∂̃aǫ′c)ē
cb + (∂̃bǫ′c)ē

ac + ǫ′c∂̃
c ēab . (3.87)

Noting that Êab = Ĝ′ab + B̂′ab, that Ĝ′ raises indices, and using (3.82), we find

δEab = δēab = Lǫ′Eab − ∂̃a(ǫ′cB̂
cb) + ∂̃b(ǫ′cB̂

ca) . (3.88)

Since the last two terms give a symmetry of the form (3.84), the theory contains a gauge

symmetry

δEab = Lǫ′Eab . (3.89)

We conclude by comparing the field redefinition used here to that used in the absence

of x̃ dependence, namely eij → e+
ij in (3.55). For this purpose it is convenient to re-express

the present field redefinition (3.81)

e′ab → e′ab +
1

2
e′ac (Ĝ′−1)cde

′db . (3.90)

in terms of the lower-indexed field eab. For this we use (3.68), which gives ecd =

−Êce e′ef Êfd. Thus multiplying (3.90) from the left and from the right by Ê, we find

eab → eab −
1

2
eac (Ê−1Ĝ′−1Ê−1)cdedb . (3.91)

Using (3.66) we see that

eab → e−ab ≡ eab −
1

2
eac(Ĝ

−1 ÊtÊ−1)cd edb . (3.92)

The above shows that the field redefinition e′ab → ēab is equivalent to eab → e−ab. If

B̂ab = 0 we find e−ab = eab − 1
2e c

a ecb , an expression that differs by a crucial sign from

e+
ij = eij + 1

2e k
i ekj .
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Note that the field redefinition e → e+ needed to bring the ǫ transformations to

the form of x-diffeomorphisms (in the x̃-independent case) differs from the field redefini-

tion e → e− needed to bring the ǫ̃ transformations to the form of x̃-diffeomorphisms (in

the x-independent case). While our symmetries contain both x-diffeomorphisms and x̃-

diffeomorphisms in certain limits, it is not clear how, or even if, they fit together to form

diffeomorphisms of the doubled torus.

4 T-duality of the action

We have written a field theory action (3.25) that represents the dynamics of certain fluctu-

ations (eij and d) about the background Eij . T-duality states that the closed string physics

around backgrounds E and E′ related by an O(d, d, Z) transformation are identical. In the

string field theory context this was proven in [2] by showing that the string field theories

formulated around E and E′ are equivalent. In fact these theories are related by a homoge-

neous field redefinition. This field redefinition does not mix fields at different mass levels;

on a given field it shuffles momenta and winding, as well as the various polarizations. For

this reason, it is to be expected that our construction, which only keeps the N = N̄ = 1

fields, should have a T-duality symmetry. In this section we prove that T -duality is a prop-

erty of the action we have constructed. In string field theory, there are cocycle-induced

sign factors in the T-duality transformations [2].7 Our cubic action does not include the

momentum dependent sign factors that arise from cocycles and so our T-duality transfor-

mations do not include such factors either. As we discuss in section 5, such sign factors

may be needed in some circumstances and could affect the duality transformations.

We also establish that the action is invariant under the background change Bij → −Bij.

This discrete symmetry is not part of the group of O(d, d, Z) symmetries, but plays an

important role in the theory. We conclude by discussing a natural generalization of the

Buscher rules that may describe T-duality transformations of toroidal backgrounds that

fail to have U(1) isometries due to explicit dependence on both coordinates and dual

coordinates of the tori. Again, this discussion is modulo cocycle-induced sign factors.

4.1 Duality transformations

We begin by reviewing a few properties of duality transformations. The group elements

g ∈ O(D,D; Z) are 2D × 2D matrices of integers that leave the metric η invariant:

gtηg = η , η =

(
0 I

I 0

)
. (4.1)

One readily sees that det g = ±1.

Our indices i run over D = n + d values, so that the coordinates xi split into n non-

compact directions xµ and d compact ones xa. If n = 0 and all dimensions are compact,

then the doubled torus has 2D periodic coordinates xi, x̃i transforming in the fundamental

representation of O(D,D; Z). If there are n non-compact directions, we shall be interested

7See [32] for a review of the role of cocycles in T-duality in the first-quantized formalism.
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in the O(d, d; Z) subgroup of O(D,D; Z) that preserves xµ and which acts only on the 2d

periodic coordinates xa, x̃a. It is this O(d, d; Z) subgroup that is a symmetry of the string

theory, but it will be useful to represent its action in terms of the 2D × 2D matrix g.

As in section 2.2, we write E = G + B, with D × D matrices E = {Eij}, G = {Gij},
and B = {Bij}. We also use G−1 = {Gij}. If we write the 2D × 2D matrix

g =

(
a b

c d

)
, (4.2)

the group action on the background is

E′ = g(E) = (aE + b)(cE + d)−1 . (4.3)

We emphasize that we restrict ourselves to matrices g in the O(d, d; Z) subgroup of

O(D,D; Z). This means that explicitly we have the D × D matrices:

a =

(
â 0

0 1

)
, b =

(
b̂ 0

0 0

)
, c =

(
ĉ 0

0 0

)
, d =

(
d̂ 0

0 1

)
, (4.4)

where â, b̂, ĉ, and d̂ are d × d matrices such that

ĝ =

(
â b̂

ĉ d̂

)
∈ O(d, d, Z) . (4.5)

(We use hats for d × d matrices.) It is straightforward to verify that if ĝ ∈ O(d, d, Z) then

g ∈ O(D,D, Z). The background E is a matrix of the form

E =

(
Ê 0

0 η

)
, with Ê = Ĝ + B̂ = [Êab] and η = [ηµν ] . (4.6)

It follows from the transformation in (4.3) that

E′ =

(
Ê′ 0

0 η

)
, with Ê′ = (âÊ + b̂)(ĉÊ + d̂)−1 . (4.7)

This is the expected transformation of the background metric: the background Ê in the

torus is transformed by an element of O(d, d, Z) while the Minkowski background is left

unchanged.

It is a familiar result that the non-linear transformation (4.3) of E becomes the linear

transformation of the 2D × 2D matrix H defined in (2.17):

H(E′) = gH(E)gt . (4.8)

It is useful to introduce the D × D matrices M (written as Mi
j) and M̄ (written as

M̄i
j) defined by the relations

M ≡ dt − E ct =

(
d̂t − Ê ĉt 0

0 1

)
,

M̄ ≡ dt + Etct =

(
d̂t + Êt ĉt 0

0 1

)
.

(4.9)
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The matrices M and M̄ control the transformation of the metric G obtained from (4.3)

by splitting E′ into symmetric and antisymmetric parts, E′ = G′ + B′. Indeed, equation

(4.10) in [2] gives

(d̂ + ĉÊ)t Ĝ′ (d̂ + ĉÊ) = Ĝ ,

(d̂ − ĉÊt)t Ĝ′ (d̂ − ĉÊt) = Ĝ .
(4.10)

These relations, together with (4.9) quickly lead to

G−1 = (M̄ t)−1 G′−1 M̄−1 ,

G−1 = (M t)−1 G′−1 M−1 .
(4.11)

Two more identities from [2] (eqs. (4.19)) are useful to us:

b̂t − Êât = −(d̂t − Êĉt)Ê′ ,

b̂t + Êtât = (d̂t + Êtĉt)Ê′t .
(4.12)

In terms of the D × D matrices the above relations give,

bt − Eat = −ME′ ,

bt + Etat = M̄ E′t .
(4.13)

Finally, a perturbation of the background E + δE transforms to E′ + δE′ where

δE′ = M−1δE(M̄ t)−1 , (4.14)

so that

δEij = Mi
k M̄j

l δE′
kl . (4.15)

4.2 Duality invariance

We will begin with the action (3.25) written around a background E and with fields (eij , d)

collectively denoted by Ψ. Setting 2κ2 = 1 we have

S(E,Ψ) =

∫
dxµ dX L

[
Dk, D̄l, G

−1 ; eij(x
µ, X), d(xµ, X)

]
. (4.16)

Here X is a 2d-column vector of coordinates

X ≡
(

x̃a

xa

)
, (4.17)

and
∫

dX ≡
∫

dx̃dx. The action (4.16) is constructed from lower-index derivatives Di, D̄j

and the lower-indexed eij fields (together with d) with all index contractions using the

metric G−1. The action depends on the background E through G−1 and the derivatives

D, D̄ (see (2.24)).
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We will establish equivalence between the theory on the background E and the theory

formulated on a background

E′ = g(E) with g =

(
a b

c d

)
, (4.18)

where g is in the O(d, d; Z) subgroup of O(D,D; Z), as explained in section 4.1.

It is notationally convenient to introduce extra coordinates x̃µ, so that we have 2D

coordinates X with

X ≡
(

x̃i

xi

)
, where x̃i =

(
x̃a

x̃µ

)
, xi =

(
xa

xµ

)
. (4.19)

We will only consider fields that are independent of the extra coordinates x̃µ, so that these

coordinates play no role. With the help of these coordinates the action (4.16) can be

written as

S(E,Ψ) =

∫
dX L

[
Dk, D̄l, G

−1 ; eij(X), d(X)
]

. (4.20)

Here ∫
dX ≡

∫
dxµdxadx̃a , (4.21)

with no integration over the trivial coordinates x̃µ. Our argument will apply to any action

that is of the form (4.20) and with indices contracted in the way we describe below.

There is a natural action of O(D,D) on the 2D coordinates X but, as before, we only

consider the O(D,D; Z) transformations in the O(d, d; Z) subgroup that preserves xµ and

x̃µ and respects the periodicities of the xa, x̃a. Such a transformation takes X to X ′ where

X ′ =

(
x̃′

x′

)
= gX =

(
a b

c d

)(
x̃

x

)
=

(
ax̃ + bx

cx̃ + dx

)
. (4.22)

Then O(d, d; Z) transformations act as diffeomorphisms of the doubled torus T 2d, the sub-

group of the large diffeomorphisms GL(2d; Z) preserving η. Our ansatz for the transfor-

mation of e, d in the general case follows from the transformations found in [2]:

eij(X) = Mi
k M̄j

l e′kl(X
′) ,

d(X) = d′(X ′) .
(4.23)

Using this to write the fields e, d in terms of e′, d′ in in (4.20) gives

S(E,Ψ(Ψ′)) =

∫
dX ′ L

[
Di, D̄j , G

−1 ; Mi
k M̄j

l e′kl(X
′), d′(X ′)

]
, (4.24)

where we have used
∫

dX ≡
∫

dxµdxadx̃a =

∫
dxµd(x′)ad(x̃′)a =

∫
dX ′ , (4.25)

since the Jacobian of the transformation is unity.
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The transformation (4.22) of X implies that the (lower-indexed) derivatives acting on

the new fields can be rewritten in terms of primed derivatives based on E′ as follows

D = MD′ ,

D̄ = M̄D′ ,
(4.26)

as we will show below. Then the action becomes

S(E,Ψ(Ψ′)) =

∫
dX ′ L

[
MD′, M̄D′, G−1 ; Mi

k M̄j
l e′kl(X

′), d′(X ′)
]
. (4.27)

If we can show that this is equal to

S(E′,Ψ′) =

∫
dX ′ L

[
D′, D̄′, G′−1 ; e′ij(X

′), d′(X ′)
]
, (4.28)

then we will have

S(E′,Ψ′) = S(E,Ψ(Ψ′)) , (4.29)

establishing the desired physical equivalence.

To show this, we need to keep track of which indices transform with an M and which

with an M̄ . For this argument, we introduce a notation in which lower indices i transform

with an M and lower indices ī transform with a M̄ , while upper indices transform with the

inverses of these matrices. Then (4.26) implies that the derivatives are Di, D̄j̄ while (4.23)

implies that eij̄ has a first index which is unbarred and a second which is barred. The two

forms for the transformation of the metric in (4.11) imply that we can write G−1 with with

two unbarred indices as Gij or with two barred ones as Gī j̄. For any action in which all

unbarred indices are contracted amongst themselves using Gij and all the barred indices

are contracted amongst themselves using Gī j̄ , equation (4.11) implies that all factors of

M and M̄ will cancel. This gives the equality of (4.27) and (4.28), as required. The

index contractions in the cubic action (3.25) indeed obey this rule. We see from the string

field (2.38) that the first index in eij is tied to an unbarred oscillator while the second is tied

to a barred oscillator. It is clear from the commutation relations (2.21) that contractions

always relate two un-barred or two barred operators, but cannot ever mix them. The same

is true for the derivatives D and D̄ that arise from unbarred and barred zero modes, as

shown in (2.23). It follows that the action derived from the string field theory obeys the

stated contraction rules, and so must be T-dual in this way.

To complete the above proof we must derive (4.26). Consider the action of deriva-

tives with respect to x and x̃ on functions of X ′. As a preliminary, short calculations

using (4.22) give

∂

∂x
F (X ′) =

(
bt ∂

∂x̃′
+ dt ∂

∂x′

)
F (X ′) ,

∂

∂x̃
F (X ′) =

(
at ∂

∂x̃′
+ ct ∂

∂x′

)
F (X ′) .

(4.30)
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We then have for Di

DF (X ′) =
1√
α′

(
∂

∂x
− E

∂

∂x̃

)
F (X ′)

=
1√
α′

(
bt ∂

∂x̃′
+ dt ∂

∂x′
− E

[
at ∂

∂x̃′
+ ct ∂

∂x′

])
F (X ′)

=
1√
α′

(
(dt − Ect)

∂

∂x′
+ (bt − Eat)

∂

∂x̃′

)
F (X ′) .

(4.31)

Making use of (4.13)

DF (X ′) = M
1√
α′

(
∂

∂x′
− E′ ∂

∂x̃′

)
F (X ′) = M D′F (X ′) , (4.32)

as we wanted to show. We repeat for the derivative D̄i:

D̄F (X ′) =
1√
α′

(
∂

∂x
+ Et ∂

∂x̃

)
F (X ′)

=
1√
α′

(
bt ∂

∂x̃′
+ dt ∂

∂x′
+ Et

[
at ∂

∂x̃′
+ ct ∂

∂x′

])
F (X ′)

=
1√
α′

(
(dt + Etct)

∂

∂x′
+ (bt + Etat)

∂

∂x̃′

)
F (X ′) .

(4.33)

Making use of (4.13)

D̄F (X ′) = M̄
1√
α′

(
∂

∂x′
+ E′t ∂

∂x̃′

)
F (X ′) = M̄ D̄′F (X ′) , (4.34)

as we wanted to show. This completes our proof of (4.26), and therefore our proof of

T -duality.

4.3 Inversion

We now give some explicit formulae relevant to the Z2 duality transformation that simul-

taneously exchanges all tori coordinates xa and x̃a. This duality transforms the toroidal

background with

ĝ =

(
â b̂

ĉ d̂

)
=

(
0 1

1 0

)
∈ O(d, d, Z) . (4.35)

Explicitly, b̂ab = δab and ĉab = δab, introducing metrics that can naturally raise and lower

indices in what follows. Using (4.7) we find that the toroidal part of the background is

transformed to:

Ê′ = Ê−1 , E′ =

(
Ê−1 0

0 η

)
. (4.36)

We also have from (4.10)

Êt Ĝ′Ê = Ê Ĝ′Êt = Ĝ . (4.37)

Taking inverses and solving for Ĝ′−1 we find

Ĝ′−1 = Ê Ĝ−1 Êt = Êt Ĝ−1 Ê . (4.38)
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This gives equation (3.66) which was used to investigate the gauge transformations of the

theory in which fields depend only on x̃. We also have from (4.9)

M =

(
−Ê 0

0 1

)
, M̄ =

(
Êt 0

0 1

)
, (4.39)

so that

Ma
b = −Êacδ

cb, M̄a
b = Êcaδ

cb , (4.40)

using ĉab = δab. The transformation for the field e was given in (4.23) and takes the form

eab(X) = Ma
c M̄b

d e′cd(X
′), since the matrices M and M̄ are block diagonal. We then find

eab(X) = −Êac e′
cd

(X ′) Êdb , (4.41)

where e′cd = e′abδ
acδbd, giving an e′ with upper indices, which was the natural convention

used in section 3.4.2. If we solve for e′ we immediately obtain (3.68). The above results

justify the starting point of the analysis in section 3.4.2.

4.4 The discrete symmetry B → −B

It is well known that the background change Bij → −Bij in a toroidally compactified

theory is a symmetry of the closed string theory. Since Bij couples electrically to the

string, this symmetry is a consequence of the orientation invariance of the theory. We now

show that the discrete symmetry discovered in the action guarantees the invariance of the

physics under Bij → −Bij .

We begin with our action

S(E,Ψ) =

∫
dX L

[
D, D̄,G−1 ; eij(X), d(X)

]
. (4.42)

The replacement B → −B makes E → G − B, which means

E → Et . (4.43)

This does not affect the metric G, but the action formulated with background Et has the

derivatives changed. Given (2.24), we have

S(Et,Ψ) =

∫
dX L

[
1√
α′

(
∂

∂x
− Et ∂

∂x̃

)
,

1√
α′

(
∂

∂x
+ E

∂

∂x̃

)
, G−1 ; eij(X), d(X)

]
.

(4.44)

We now redefine the fields as

eij(X) = e′ji(X
′) ,

d(X) = d′(X ′) ,
(4.45)

with

X ′ =

(
x̃′

x′

)
=

(
−x̃

x

)
. (4.46)
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The effect of this change on the derivatives is to reverse the sign of the terms carrying a

tilde coordinate, so by now

S(Et,Ψ(Ψ′)) =

∫
dX ′ L

[
D̄′, D′, G−1 ; e′ji(X

′), d′(X ′)
]
, (4.47)

where we also used dX = dX ′. The above action has exactly the replacements associated

with the discrete symmetry (3.26) that leaves the action invariant, so

S(Et,Ψ(Ψ′)) =

∫
dX ′ L

[
D′, D̄′, G−1 ; e′ij(X

′), d′(X ′)
]

= S(E,Ψ′) . (4.48)

This shows the physical equivalence of the actions formulated around E and around Et.

4.5 Field redefinitions, Buscher rules, and generalised T-duality

If the fields eij and d depend on the spacetime coordinates xi = (xµ, xa) but are independent

of the dual coordinates x̃a, then there is a conventional low-energy effective theory. The

effective field theory for these fields obtained using string field theory must be equivalent

to the standard string low-energy effective field theory (2.59) with higher-derivative α′ cor-

rections. The standard theory is written in terms of the total field Eij which defines gij and

bij fields that have the standard diffeomorphism and anti-symmetric tensor gauge trans-

formations (3.36). The map from string field theory to the standard effective field theory

has been studied in [30], but has not been found explicitly. We have shown in (3.59) that

Eij = gij + bij = Eij + e′ij +
1

2
e′i

k
e′kj + cubic corrections . (4.49)

Here e′ij is the field used for the double field theory and is related to the string field theory

variable eij arising in (2.38) by (3.21), so that e′ij = eij + eijd, making it clear that the

dilaton d mixes in. In the following, we will use only e′ij and drop the primes.

The full non-linear relation will include α′ corrections involving derivatives of eij and

d and string loop corrections. It is also subject to field redefinition ambiguities [30]. To

zeroth order in α′, however, the relation should contain no derivatives, on dimensional

grounds and because it is used to match two two-derivative actions. Then at zeroth order

in α′ and at string tree level there must be some algebraic function f(e, d), so that

Eij ≡ Eij + fij(e, d) , fij(e, d) = eij +
1

2
ei

kekj + cubic corrections , (4.50)

with Eij transforming as in (3.40). Moreover, this relation should apply both for the

compactified and uncompactified theory. The field Eij combines the background and fluc-

tuations geometrically.

When the fields are independent of the torus coordinates xa as well as x̃a, the U(1)d

torus action is an isometry leaving the fields invariant and T-duality acts through the

Buscher rules [18, 19]. The full metric gij and Kalb-Ramond field bij depend on xµ and

are independent of xa, x̃a and so transform according to the extension [19] of the Buscher

rules for the torus:

E ′ = g(E) = (aE + b)(cE + d)−1 . (4.51)
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These transformations are expected to receive α′ corrections and possibly string loop correc-

tions, but to zeroth order in α′ and string tree level, they are the complete non-linear trans-

formations. This can now be compared with the T-duality transformations of eij , d found

above. As the coordinates xµ do not transform, the dilaton is invariant and (4.23) gives

eij(x) = Mi
k M̄j

l e′kl(x) ,

d(x) = d′(x) .
(4.52)

For infinitesimal eij , we have Eij = Eij + eij + O(e2) and using (4.15) we see that the

expansion of (4.51) gives a linear transformation of eij which is precisely (4.52) plus

quadratic corrections. The requirement that the relation (4.50) should map the linear

transformation (4.52) to the fractional linear transformation places stringent constraints

on the function fij, as discussed in [30]. A simple explicit function that is compatible with

these two forms of the T-duality transformations was found in [30], but requiring such

compatibility does not fix the function uniquely.

Let us now return to the case in which the fields depend on the torus coordinates xa as

well as xµ (but not x̃a), so that massive Kaluza-Klein modes with momenta on the torus

exist. The dependence on xa means that the U(1)d torus action does not preserve the fields

and so the usual Buscher rules do not apply. Nonetheless, our linear transformations (4.23)

for e, d still apply, and the full fields with geometric gauge transformations are still given

by (4.50). The function fij in (4.50) still converts linear duality transform transformations

into fractional linear transformations. As a result, we learn that the linear transformation

of eij , d implies the non-linear transformations of E , d given by

E ′(X ′) = g(E(X)) = (aE(X) + b)(cE(X) + d)−1 ,

d′(X ′) = d(X) .
(4.53)

Here, the argument X refers to (xµ, xa, x̃a = 0) and X ′ = gX. For inversion in all d

circles, X ′ is given by (x′µ, x′a, x̃′
a) = (xµ, 0, xa) so that the T-dual of a configuration with

dependence on (xµ, xa) is one with dependence on (xµ, x̃a), as expected. Conversely, the

T-dual of a configuration with dependence on (xµ, x̃a) is one with dependence on (xµ, xa).

We now turn to the general case in which the fields eij and d depend on x̃a as well

as xµ, xa. Then the T-duality transformations of eij , d are still given by (4.23). In this

case it is not so clear how we should define the total field E(X) as we no longer have a

conventional field theory description to guide us. Moreover, as we saw in section 3.4.2,

different field redefinitions are useful in different contexts. A natural definition, however,

is to take Eij ≡ Eij + eij + fij(e, d) with the same algebraic function f that arose above

in the map from string field theory to the effective field theory, so that we recover the

results above in the case in which there is no dependence on x̃a. If we do so, the fact that

fij maps our linear T-duality transformations to fractional linear ones implies that the

transformation of this Eij is again given by (4.53) but now with general dependence on the

coordinates (xµ, xa, x̃a). This is a simple and manifestly O(d, d; Z) compatible candidate for

the generalisation of the Buscher rules to the case with general dependence on (xµ, xa, x̃a).
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The fact that the double field theory action satisfies

S(E, e, d) = S(E′, e′, d′) , (4.54)

implies that the transformation of both the background E and the fields e, d is a symmetry

of the action. If the action can be rewritten in terms of the total field E so that S(E, e, d) =

S(E , d), then it will be manifestly independent of the split into a background field E and

a fluctuation e and will be invariant under the T-duality transformations (4.53)

S(E , d) = S(E ′, d′) . (4.55)

The matrix H(E) defined in (2.17) for the background field E has a natural generali-

sation for the total field E = g + b. We define the 2D × 2D matrix H(E) by

H(E) =

(
g − bg−1b bg−1

−g−1b g−1

)
. (4.56)

It follows from (4.8) that the background transformation (4.53) induces a simple linear

transformation for H(E)

H(E ′(X ′)) = gH(E(X)) gt . (4.57)

From (4.57), the inverse G(E) ≡ (H(E))−1 transforms as

G(E) = gt G(E ′(X ′)) g . (4.58)

This can be written suggestively using X ′ = gX:

G(X) =

(
∂X ′

∂X

)t

G′(X ′)

(
∂X ′

∂X

)
. (4.59)

where G′(X ′) = G(E ′(X ′)) and G(X) = G(E(X)). This shows that G behaves as a covariant

tensor under O(D,D) transformations. Indeed, G defines a duality invariant line element

ds2 = dXt G(E(X)) dX . (4.60)

The metric G and its relation to the generalised metric in generalised geometry is discussed

in section 6.

5 Constraint, cocycles, and null subspaces

In this section we discuss some of the subtle issues that arise in our construction. We have

referred to these at various points in the earlier sections. We begin with an examination

of the constraint that requires fields and gauge parameters to be in ker(∆), namely, the

kernel of the second-order differential operator ∆. We define the natural linear projection

[[ · ]] that takes an arbitrary double field to this kernel. We then turn to a discussion of

cocycles and sign factors. It is possible that the nonlinear completion of the theory will

involve these sign factors. Finally, we conclude with a discussion of null spaces that arise

from the restriction to double fields that have no winding in some suitable T-dual frame,

resulting in a conventional field theory for that non-winding sector.
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5.1 The constraint and projectors

The constraint L0 − L̄0 = 0 is applied to all fields and gauge parameters. The product

of two fields satisfying the constraint will not satisfy it in general, and for this reason the

string product [·, ·] includes an explicit projection onto states that satisfy L0 − L̄0 = 0.

It also has an insertion of b−0 that ensures that the string product is annihilated by b−0 .

Schematically, we have

[Ψ1,Ψ2] ≡
∫

dθ

2π
eiθ(L0−L̄0)b−0 [Ψ1,Ψ2]

′ = δL0−L̄0,0 b−0 [Ψ1,Ψ2]
′ , (5.1)

where the primed bracket [· , ·]′ inserts the states in the three-punctured sphere that defines

the vertex. The b−0 insertion implies that the string product has an intrinsic ghost number

of minus one: gh([A,B]) = gh(A)+gh(B)−1. This inclusion of the projection in the string

product in covariant closed string field theory leads to the failure of a Jacobi identity and

this then requires further higher order interactions resulting in a non-polynomial theory.

Concretely, one finds [3]

0 = Q[B1, B2, B3] + [QB1, B2, B3] + (−1)B1 [B1, QB2, B3] + (−1)B1+B2 [B1, B2, QB3]

+ (−)B1 [B1, [B2, B3]] + (−1)B2(1+B1) [B2, [B1, B3]] + (−1)B3(1+B1+B2) [B3, [B1, B2]] .

(5.2)

If the string product [· , · , ·] satisfied a Jacobi-like identity, the terms on the second line

would add up to zero. Since they do not, one requires an elementary triple product repre-

sented by [· , · , ·] and used to define a quartic elementary interaction. This triple product

(as well as all higher ones) must also include a projection to states that satisfy L0− L̄0 = 0.

The failure of Q to be a derivation of this product is equal to the violation of the Jacobi

identity. The above relation is part of the defining relations of the L∞ homotopy Lie-

algebra [3, 31].

Consider now the states with N = N̄ = 1. Projection down to the physical space with

∆ = 0 is most easily discussed in momentum space. Consider a field φ (with N = N̄ = 1)

with definite momenta and winding numbers (wa, pa) = (ma , na) with a = 1, 2, . . . , d . Then

∆φ = 0 ↔
∑

a

nam
a ≡ n m = 0 . (5.3)

We combine the winding ma and the momentum na of φ into a 2d-column vector v:

v =

(
m

n

)
∈ Z

2d , (5.4)

and define the inner product with respect to the O(d, d) invariant metric η̂

v ◦ v′ ≡ vT η̂ v′ =
(
m,n)

(
0 1

1 0

)(
m′

n′

)
= mn′ + nm′ . (5.5)

Since v ◦ v = 2nam
a, the ∆ = 0 constraint on the vector takes the form

∆φ = 0 ↔ v ◦ v = 0 . (5.6)
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In words, the vector v is null with respect to η. A field with definite momentum and

winding must satisfy this condition to be allowed. A general superposition of such allowed

fields is also allowed, since ∆ is a linear operator. If we have fields φ and φ′ with null

momenta v and v′, the product φφ′ has momentum v + v′ which is not null in general.

The product will only satisfy the constraint if the momenta are orthogonal:

∆(φφ′) = 0 ↔ (v + v′) ◦ (v + v′) = 0 ↔ v ◦ v′ = 0 . (5.7)

The constraint is not satisfied by products since ∆ is a second-order differential operator.

We enforce the constraint as follows. Given a general field A(xµ, xa, x̃a), a Fourier series

for the compact dimensions yields

A(xµ, xa, x̃a) =
∑

v∈Z2d

Â(xµ, v) eivT
X =

∑

v∈Z2d

Â(xµ, v) eima x̃a+inaxa

. (5.8)

Since ∆ = − 2
α′∂a∂̃

a we find

∆A =
1

α′

∑

v∈Z2d

v ◦ v Â(xµ, v) eivT
X . (5.9)

A canonical projection of a general A into a field [[A]] that satisfies the ∆ = 0 constraint

is defined by

[[A]] ≡
∑

v∈Z2d

δv◦v,0 Â(xµ, v) eivT
X . (5.10)

The role of the Kronecker delta is to retain only the Fourier components of the field whose

momenta are null. It is now clear that

∆[[A]] = 0 . (5.11)

It is also clear from the definition that with constants α and β and functions A and B we

have

[[αA + βB]] = α [[A]] + β [[B]] . (5.12)

The operation [[ · ]] is a linear map from the space of functions on the doubled torus to

the kernel of ∆. It is a projector because applying it twice has the same effect as applying

it once. The operation [[ · ]] implements the ∆ = 0 constraint in the same way that the

Kronecker delta in (5.1) implements the level matching constraint for a general string

field. For constrained fields A(x, x̃) and B(x, x̃), the product [[A(x, x̃)B(x, x̃)]] projects

onto those Fourier modes Â(x, v)B̂(x, v′) with v, v′ both null and orthogonal, v ◦ v′ = 0.

The closed string product includes the projector δL0−L̄0,0 because the product of two

allowed states should give an allowed state. We must therefore use the projection [[ · ]] in

the gauge transformations (3.27) to ensure that the gauge variations are allowed variations

of the fields. This means that, properly written, the gauge transformations are

δλeij = D̄jλi +
1

2

[[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]]
,

δλd = −1

4
D · λ +

1

2

[[
(λ · D) d

]]
.

(5.13)
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Happily, there is no need to use the projection [[ · ]] in the cubic action. The action is

correct as written in equation (3.25). This is not difficult to explain. Let A be a field that

satisfies ∆A = 0 and B be a field that does not. Then, we claim that

∫
A [[B ]] =

∫
AB , (5.14)

where the integral is over xµ, xa, and x̃a. It follows from the above that the projection of

B to the kernel of ∆ is not needed. This is clear in momentum space. The integration

implies that any Fourier mode of B with momentum v can only couple to a Fourier mode

of A with momentum (−v). Then any Fourier mode of B with momentum v that is not

allowed cannot contribute since (−v) is also not allowed and thus cannot be found in

A, as A satisfies the constraint. Next consider the cubic term in the action. Since this

arises from the string field theory term 〈Ψ, [Ψ ,Ψ]〉 the structure we obtain must be a sum

of terms of the form
∫

φ1 [[φ2φ3]]. Since φ1 satisfies the constraint, equation (5.14) shows

that the projector is not needed for the product φ2φ3. Therefore, we do not need to include

additional projectors in the quadratic and cubic terms in the action. Similar remarks apply

to the check of gauge invariance of the action. The above gauge transformations induces

terms of the form
∫

φ1 [[λφ2]]. Again, the projector is not needed to the order to which we

are working, and we can proceed naively.

This convenient simplification may disappear for terms in the action quartic in fields.

The terms that arise from the elementary quartic interaction 〈Ψ, [Ψ ,Ψ ,Ψ]〉 of the closed

string field theory action would have the form
∫

φ1[[φ2φ3φ4]]. Again, because of (5.14)

the projector is not needed and this term equals
∫

φ1φ2φ3φ4. On the other hand, terms

that arise from integrating out other fields will have a projector of the form
∫

φ1φ2 [[φ3φ4]].

This projector cannot be eliminated. It is clear that given four fields, the projector can

be inserted in three inequivalent ways — the number of ways in which the fields can be

partitioned into groups of two. It seems tempting to believe that terms with these three

inequivalent positions of the projector may be related to terms with no projector through

identities in the spirit of (5.2).

5.2 Cocycles

We now address another important issue. Closed string vertex operators in toroidal back-

grounds have cocycles — operators that are included to ensure standard commutation

properties [27, 28]. If V0
vα

denotes the naive vertex operator for a state with momenta and

winding specified by vα one finds

V0
v2

(z2, z̄2) V0
v1

(z1, z̄1) = eiπ v1◦v2 V0
v1

(z1, z̄1) V0
v2

(z2, z̄2) . (5.15)

The phase factor can be equal to minus one, in which case we have the unpleasant fact that

vertex operators for bosons anticommute. A cocycle operator is included multiplicatively

to define vertex operators Vvα that always commute. These cocycles affect the signs of

correlation functions. As a result, there are extra signs that are introduced in the three-

string vertex [2, 4, 5]. Up to field redefinitions, the sign factor that affects the amplitude
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〈VvαVvβ
Vvγ 〉 is

ǫαβγ = eiπ(nαmα+nγmβ) . (5.16)

Of course vα + vβ + vγ = 0. The sign factor can be shown to be cyclic invariant. Under

exchange of α and β labels, for example, this sign factor changes as follows:

ǫβαγ = ǫαβγ eiπvα◦vβ . (5.17)

The sign factor (5.16) is nontrivial: it cannot be removed by redefinitions of the states

corresponding to the vertex operators. For our case of interest the situation is somewhat

simpler. We have nαmα = 0 because all states satisfy the ∆ = 0 constraint. As a

result, (5.16) becomes

ǫαβγ = eiπ nγmβ

. (5.18)

Despite appearances to the contrary this sign factor is fully symmetric under exchange of

labels. This can be understood as follows. First recall the simple fact that given three

null vectors that add up to zero, the vectors are mutually orthogonal. This shows that

vα ◦ vβ = vα ◦ vγ = vβ ◦ vγ = 0 and the sign factor associated with exchanges vanishes.

A symmetric sign factor could be trivial, but we have not been able to show that (5.18)

is trivial. Note, however, that any three (constrained) states coupled by the three string

vertex have momenta which are orthogonal and therefore the associated cocycle-free vertex

operators commute (see (5.15)).

The cubic action we have written did not include cocycle-induced sign factors. If

present, such signs also appear in the gauge transformations and in the duality transfor-

mations. It is known that string field theory gauge invariance to O(ΛΨ2) holds with or

without such sign factors and this may explain why our construction succeeded so far with-

out any sign factors. It is to next order that the sign factors are claimed to be needed for

gauge invariance [4]. The cocycle-induced sign factors are non-trivial and required for the

full string field theory, but their role may be different for the double field theory we are

focussing on. We hope to return to this question in the future.

5.3 Spaces large and small

For fields with arbitrary dependence on the coordinates X of T 2d, the momenta can be

arbitrary v’s in the full momentum lattice Z
2d introduced in section 5.1. The constraint

v ◦ v = 0 , (5.19)

restricts us to the null subspace of Z
2d, which we refer to as the large space. The equation

v ◦ v = 0 defines a light-cone in R
2d with metric η̂, and the large space consists of the

points on this light cone with integer coordinates. For general string states with N 6= N̄ ,

this light-cone is replaced by the hyperboloid

1

2
v ◦ v = N − N̄ . (5.20)

A 2d dimensional space with metric of signature (d, d) can have totally null d-

dimensional subspaces (called totally isotropic subspaces in the mathematics literature)
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in which the indefinite metric restricts to zero, so that all tangent vectors to the subspace

are null and mutually orthogonal. We shall be interested in totally null subspaces T d ⊂ T 2d.

Writing the metric as ds2 = 2dxadx̃a, we see that the d-torus with coordinates xa and the

dual torus with coordinates x̃a are both totally null, and any T d obtained from these by

acting with O(d, d; Z) will also be totally null. If we let the coordinates of a null subspace

be ya and those of the complement be ỹa, then the metric η̂ is ds2 = 2dyadỹa and

∆ = − 2

α′

∑

a

∂

∂ỹa

∂

∂ya
. (5.21)

For fields that are independent of ỹ, the constraint ∆ = 0 is automatically satisfied. More-

over, all products of fields satisfy the constraint ∆ = 0 and no projection [[ · ]] is necessary.

Nor are cocycles needed, as all momenta v for such fields are null and mutually orthogonal,

so all vertex operators are mutually local. Then the restriction of the full double field

theory to fields dependent only on the coordinates ya of such a null subspace (together

with xµ) should give a conventional local field theory without cocycles or projectors. For

the T d with coordinates xa, this should be the conventional field theory with action (2.59)

(after field redefinitions, and compactified on T d), while for other choices it should be a

dual theory related to this by an O(d, d; Z) transformation. However, these theories can

be written in a duality covariant way, by taking the double field theory and restricting the

momentum space to a small space where all vectors v are not only null, but also mutually

orthogonal. With this restriction, the double field theory has no cocycles, constraints or

projectors. It would be very interesting to obtain the full nonlinear version of our action

under this simplifying assumption. The result may be related to the work of Siegel [8] who

constructed a realization of T-duality in the massless sector under the assumption that all

momenta are orthogonal.

6 Comments and open questions

A striking feature of string field theory on a torus is that general solutions involve fields on

the doubled torus instead of conventional spacetime fields. As a result, the theory is very

different from that suggested by conventional effective field theories that, like supergravity

limits of superstrings, miss key stringy features. The theory on a torus is a case which is

nontrivial enough to be interesting yet is simple enough to be tractable. One of our goals

here has been to seek a subsector of this theory that is almost as simple as a conventional

field theory but which is rich enough to include much of the magic of string theory.

We have begun the construction of an intriguing double field theory of massless

fields hij , bij , d depending on both x and x̃. We have used string field theory to find the

action to cubic order and showed that its variation under gauge transformations, found

to linear order in the fields, vanishes to the requisite order. By including both winding

and momenta we do not have a regime where all excitations have parametrically small

energy and the theory may not arise as a simple decoupling limit of string theory. If we

view our construction as an effective field theory for a natural set of excitations (some of

which may have large energy), the string field theory suggests that an action and gauge
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transformations should exist to all orders in the field, although the explicit calculation of

these becomes much harder at higher orders. The unusual features of string field theory

include the explicit projectors to the kernel of L0 − L̄0, cocycle-induced sign factors in

the vertices, and the homotopy Lie algebra structure of the string products. These are all

expected to play a role in the double field theory, although they have been largely avoided

at the cubic level. Of course, the ∆ = 0 constraint on fields and gauge parameters, which

arises from the L0 − L̄0 = 0 constraint in string field theory, has played a central role. It

was absolutely crucial, even for linearised gauge invariance.

It has long been known that the L0−L̄0 = 0 constraint is fundamental and all attempts

to formulate closed string field theory without imposing this off-shell condition on the fields

and parameters have so far failed. Such a formulation could exist, but a very significant

conceptual advance may be needed to find it. In our massless theory the level-matching

constraint became ∆ = 0. Our attempts to relax this constraint failed, but we hope that

understanding the constraint in the simpler setting of the double field theory may shed

light on the constraint in the full string field theory.

It is natural to speculate on the full non-linear form of the theory. We noted that the

free theory includes gauge parameters that suffice to describe “double-diffeomorphisms”

or linearised diffeomorphisms of the doubled space R
n−1,1 × T 2d. The nonlinear exten-

sion shows that the symmetry of the theory appears to be considerably more intricate.

In addition to linearised diffeomorphisms, the gauge parameters generate doubled gauge

transformations of the antisymmetric tensor field so that there is an interesting mixture of

the two symmetries. Second, there is the projection of the gauge parameters to the kernel

of ∆. The full symmetry has an algebra that appears to be different from that of diffeomor-

phisms on the doubled space R
n−1,1×T 2d, but does include the diffeomorphisms of various

undoubled subspaces R
n−1,1 × T d obtained by keeping only the xa coordinates, or keeping

only a set of coordinates obtained from the xa by T-duality. As we have noted at various

points, the full symmetry of the theory may turn out to be that of a homotopy-Lie algebra,

or some related structure. It would be interesting to see what field theory structures arise

to define the higher products inherent in such algebra. In a homotopy Lie algebra we have

field dependent structure constants and a gauge algebra that only closes on-shell. These

features are coherently organised and described by the products. While diffeomorphisms

define a conventional Lie algebra, the larger symmetry of our theory most likely does not.

Perhaps the most important open question related to the action is that of cocycles. The

construction of the quartic terms in the action will have to face this issue, as well as the

possibility that explicit projectors to the kernel of ∆ will be needed.

The string field theory treats the background E and the fluctuation e rather differ-

ently, but gives a treatment to all orders in an arbitrary fluctuation e. In section 4.5, we

introduced a total field E(X) combining both background and fluctuation, showing that

it had the right geometric gauge transformations when independent of x̃. The Buscher

transformation of E was extended to the case with dependence on both x and x̃, providing

a generalisation of T-duality of the kind proposed in [25]. Rewriting the double field theory

in terms of E would give a version of the theory independent of the split into background

and fluctuation, and thus with some degree of background independence. Although arbi-
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trary geometries would be allowed, our formulation would remain very much tied to the

topology R
n−1,1 × T d; other topologies would have different zero-mode structures.

Some of the structures in our work also arise in generalised geometry, but with im-

portant differences. Generalised geometry [35, 36] treats structures on a D dimensional

manifold M on which there is a natural action of the group O(D,D). This typically in-

volves doubling the tangent space of a manifold M (replacing the tangent bundle T with

T ⊕ T ∗). Tensor indices then run over twice the usual range, but there is dependence only

on the D coordinates of M . If M is equipped with a metric and B-field Eij = gij + bij,

these can be usefully combined into the 2D×2D matrix H(E) given by (4.56). The inverse

matrix G(E) = H−1 is the generalised metric [36]. It is a 2D × 2D matrix but depends

only on the D coordinates of M . Generalised geometry is then the study of conventional

geometry with a metric and B-field on M , packaged in a useful way.

In our work, by contrast, we restrict to D-dimensional manifolds M = R
n−1,1×T d and

find that string theory leads us to R
n−1,1 × T 2d, with a doubling of the torus coordinates

but no doubling of the range of tensor indices. We found it notationally useful to double the

coordinates of R
n−1,1 also, to give a space Mdoubled with dimension 2D. Our fields depend

non-trivially on the doubled torus coordinates (xa, x̃a) and on the Minkowski coordinates

xµ, but do not depend on the extra dual Minkowski coordinates x̃µ. It follows that we

can use the double field theory fluctuations to define the field E = Eij + eij + . . . in (4.49)

that depends nontrivially on (xµ, xa, x̃a). We then define an H(E) by (4.56) and its inverse

G(E). If E depends only on the coordinates (xµ, xa) of M , then G(E) is a generalised metric

on M , but here we generalise to allow dependence on x̃a also. Since G(E) is a 2D × 2D

matrix function on the 2D dimensional space Mdoubled that depends on (xµ, xa, x̃a), it is

a candidate for a conventional metric on Mdoubled. We have seen in (4.60) that the line

element ds2 = dXt G(E(X)) dX is invariant under T-duality transformations, which act as

large diffeomorphisms of T 2d. The metric G is constrained, because H is: ηH = H−1η, and

is further restricted by the requirement that ∆ annihilate eij and d. Then G is a natural and

interesting object that could play an important role in the formulation of double field theory.

Our work has been concrete and explicit. It has long been known that the toroidal

coordinates in closed string theory should be doubled due to the presence of winding modes

and we have given a precise sense to this, showing that the dual coordinates enter on an

equal footing with the spacetime coordinates and that fields depend on both spacetime and

dual coordinates. We have seen that double field theory exists as a free theory and when

we include the lowest-order interactions. A number of key features have been identified

precisely. The symmetry structure is novel and remains to be fully understood and the

full nonlinear theory remains to be found. We have seen that doubled fields can be used

to define a kind of geometry on the doubled space that reduces to conventional spacetime

geometry on the original torus or to a dual geometry on the dual torus. This geometry

is fully dynamical — it depends on all of the coordinates of the doubled space, it evolves

according to field equations and is subject to constraints. This leads to the conclusion

that the full doubled geometry is physical: the dual dimensions should not be viewed as

an auxiliary structure or a gauge artifact. It is therefore reasonable to expect that doubled

geometry will feature prominently in the eventual understanding of the nature of space

and the role of geometry in string theory.

– 49 –



J
H
E
P
0
9
(
2
0
0
9
)
0
9
9

Acknowledgments

We would like to thank the KITP in Santa Barbara for hospitality during the 2009 Fun-

damental Aspects of Superstring Theory program and D. Gross for his questions and com-

ments. We are grateful to N. Moeller, whose computer programs helped sort out signs of

ghost correlators needed to compute the action and gauge transformations. We are happy

to acknowledge helpful conversations with M. Green, W. Siegel, W. Taylor, and A. Tseytlin.

The work of B.Z. is supported in part by the U.S. DOe grant De-FC02-94eR40818.

References

[1] A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory,

Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].

[2] T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory,

Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [SPIRES].

[3] B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation,

Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [SPIRES].

[4] H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Gauge string field theory for torus

compactified closed string, Prog. Theor. Phys. 77 (1987) 443 [SPIRES].

[5] M. Maeno and H. Takano, Derivation of the cocycle factor of vertex in closed bosonic string

field theory on torus, Prog. Theor. Phys. 82 (1989) 829 [SPIRES].

[6] C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065

[hep-th/0406102] [SPIRES].

[7] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics,

Phys. Lett. B 242 (1990) 163 [SPIRES]; Duality symmetric closed string theory and

interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].

[8] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [SPIRES]; Two vierbein formalism for string inspired axionic gravity,

Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].

[9] M. Van Raamsdonk, Blending local symmetries with matrix nonlocality in D-brane effective

actions, JHEP 09 (2003) 026 [hep-th/0305145] [SPIRES].

[10] M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].

[11] C.M. Hull, Covariant quantization of chiral bosons and anomaly cancellation,

Phys. Lett. B 206 (1988) 234 [SPIRES].

[12] C.M. Hull, Chiral conformal field theory and asymmetric string compactification,

Phys. Lett. B 212 (1988) 437 [SPIRES].

[13] J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory,

Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [SPIRES].

[14] C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].

[15] D.S. Berman and D.C. Thompson, Duality Symmetric Strings, Dilatons and O(d,d) Effective

Actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].

– 50 –

http://dx.doi.org/10.1016/0370-1573(94)90070-1
http://arxiv.org/abs/hep-th/9401139
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9401139
http://dx.doi.org/10.1143/PTP.87.801
http://arxiv.org/abs/hep-th/9201040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9201040
http://dx.doi.org/10.1016/0550-3213(93)90388-6
http://arxiv.org/abs/hep-th/9206084
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9206084
http://dx.doi.org/10.1143/PTP.77.443
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA,77,443
http://dx.doi.org/10.1143/PTP.82.829
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA,82,829
http://dx.doi.org/10.1088/1126-6708/2005/10/065
http://arxiv.org/abs/hep-th/0406102
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406102
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B242,163
http://dx.doi.org/10.1016/0550-3213(91)90266-Z
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B350,395
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://arxiv.org/abs/hep-th/9305073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9305073
http://dx.doi.org/10.1103/PhysRevD.47.5453
http://arxiv.org/abs/hep-th/9302036
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9302036
http://dx.doi.org/10.1088/1126-6708/2003/09/026
http://arxiv.org/abs/hep-th/0305145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305145
http://dx.doi.org/10.1016/0550-3213(90)90520-N
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B335,610
http://dx.doi.org/10.1016/0370-2693(88)91498-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B206,234
http://dx.doi.org/10.1016/0370-2693(88)91794-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B212,437
http://dx.doi.org/10.1016/0550-3213(93)90387-5
http://arxiv.org/abs/hep-th/9207016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9207016
http://dx.doi.org/10.1088/1126-6708/2007/07/080
http://arxiv.org/abs/hep-th/0605149
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605149
http://dx.doi.org/10.1016/j.physletb.2008.03.012
http://arxiv.org/abs/0712.1121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1121


J
H
E
P
0
9
(
2
0
0
9
)
0
9
9

[16] D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the

Duality Symmetric String, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].

[17] E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus,

JHEP 10 (2006) 062 [hep-th/0605114] [SPIRES].

[18] T.H. Buscher, A Symmetry of the String Background Field Equations,

Phys. Lett. B 194 (1987) 59 [SPIRES]; Path Integral Derivation of Quantum Duality in

Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].
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